File size: 57,473 Bytes
9502853
0354172
74e613f
6416439
da5e58a
9502853
ef3044e
0354172
9502853
 
 
 
2149a13
30234a7
dc6ea0c
4107bd4
9502853
f478447
 
9502853
0354172
 
9502853
 
0354172
9502853
 
 
 
 
 
 
0354172
9502853
a9c8456
 
 
0094e50
 
0354172
c87e1a9
 
 
0354172
9502853
 
74e613f
 
0354172
74e613f
 
 
 
 
 
 
0354172
9502853
 
0354172
9502853
 
 
 
 
4ed8a8b
74e613f
9502853
f478447
 
4e9f9bb
 
f478447
9502853
4107bd4
 
9502853
4107bd4
4e9f9bb
4107bd4
d2155df
4107bd4
d2155df
4107bd4
d2155df
 
 
 
 
 
 
4107bd4
d2155df
 
4107bd4
 
 
 
 
 
 
d2155df
4107bd4
d2155df
4107bd4
d2155df
4107bd4
 
d2155df
47b8e16
a747844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd4bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6ea0c
d377f91
 
 
bfd4bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30234a7
63bcb8b
 
 
d377f91
b2a1f87
dc6ea0c
d377f91
 
 
 
 
 
 
1794809
 
dc6ea0c
 
d377f91
 
 
 
 
 
 
4f2ad9a
d377f91
 
 
 
 
bfd4bd9
d377f91
bfd4bd9
 
d377f91
bfd4bd9
 
d377f91
 
 
 
 
bfd4bd9
d377f91
 
bfd4bd9
a747844
d377f91
1bba21a
 
 
 
 
 
 
47b8e16
9502853
 
 
 
 
1bba21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c95d47
dc6ea0c
d377f91
dc6ea0c
d377f91
b2a1f87
dc6ea0c
d377f91
 
 
 
 
1a6953b
d377f91
dc6ea0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377f91
 
dc6ea0c
 
 
 
d377f91
 
 
 
 
 
 
 
 
 
 
dc6ea0c
 
 
 
4879f09
9502853
d7880e6
0354172
9502853
3348c4b
dc6ea0c
4f22430
 
 
 
dc6ea0c
 
 
 
 
 
 
 
 
 
2c95d47
dc6ea0c
 
4f22430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0354172
9502853
1cd5e38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e03c4
 
 
 
1cd5e38
 
 
 
 
 
4f2ad9a
 
 
0e6fb0f
f2be59e
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e001c1f
4f2ad9a
e001c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
beab373
4f2ad9a
 
 
 
 
 
 
 
 
 
f2be59e
 
 
4f2ad9a
f2be59e
 
 
 
 
 
 
 
 
 
4f2ad9a
f2be59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2ad9a
 
f2be59e
 
 
 
 
4f2ad9a
 
f2be59e
976b387
 
 
 
 
 
 
 
 
 
 
 
1cd5e38
4f2ad9a
0354172
159d21d
1cd5e38
4f2ad9a
 
 
976b387
 
4f2ad9a
 
976b387
4f2ad9a
 
 
976b387
4f2ad9a
 
 
0fba843
 
976b387
4f2ad9a
0fba843
976b387
 
 
 
 
 
4f2ad9a
 
976b387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2ad9a
 
 
 
8ea2f10
 
 
4f2ad9a
 
 
 
 
 
 
8ea2f10
4f2ad9a
 
 
 
 
 
beab373
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beab373
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fba843
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c6b86
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
a719329
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6ea0c
4f2ad9a
 
d8c6b86
 
4f2ad9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6ea0c
4f2ad9a
 
 
 
 
 
 
 
 
 
0354172
 
47b8e16
0fba843
1bba21a
4f2ad9a
 
9502853
 
4f22430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
# app.py
import os
import re
import openai
from huggingface_hub import InferenceClient
import json
from huggingface_hub import HfApi
import streamlit as st
from typing import List, Dict, Any
from urllib.parse import quote_plus
from pymongo import MongoClient
from PyPDF2 import PdfReader
st.set_page_config(page_title="Grant Buddy RAG", page_icon="๐Ÿค–")

from typing import List

from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings

from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain.prompts import PromptTemplate
from langchain.schema import Document
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
from huggingface_hub import InferenceClient

# =================== Secure Env via Hugging Face Secrets ===================
user = quote_plus(os.getenv("MONGO_USERNAME"))
password = quote_plus(os.getenv("MONGO_PASSWORD"))
cluster = os.getenv("MONGO_CLUSTER")
db_name = os.getenv("MONGO_DB_NAME", "files")
collection_name = os.getenv("MONGO_COLLECTION", "files_collection")
index_name = os.getenv("MONGO_VECTOR_INDEX", "vector_index")

HF_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "").strip()
if OPENAI_API_KEY:
    openai.api_key = OPENAI_API_KEY
from openai import OpenAI
client = OpenAI(api_key=OPENAI_API_KEY)

# MONGO_URI = f"mongodb+srv://{user}:{password}@{cluster}/{db_name}?retryWrites=true&w=majority"
MONGO_URI = f"mongodb+srv://{user}:{password}@{cluster}/{db_name}?retryWrites=true&w=majority&tls=true&tlsAllowInvalidCertificates=true"


# =================== Prompt ===================
grantbuddy_prompt = PromptTemplate.from_template(
    """You are Grant Buddy, a specialized language model fine-tuned with instruction-tuning and RLHF. 
You help a nonprofit focused on social entrepreneurship, BIPOC empowerment, and edtech write clear, mission-aligned grant responses.

**Instructions:**
- Start with reasoning or context for your answer.
- Always align with the nonprofitโ€™s mission.
- Use structured formatting: headings, bullet points, numbered lists.
- Include impact data or examples if relevant.
- Do NOT repeat the same sentence or answer multiple times.
- If no answer exists in the context, say: "This information is not available in the current context."

CONTEXT:
{context}

QUESTION:
{question}
"""
)



# =================== Vector Search Setup ===================
@st.cache_resource
def init_embedding_model():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    
    
@st.cache_resource


def init_vector_search() -> MongoDBAtlasVectorSearch:
    HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
    model_name = "sentence-transformers/all-MiniLM-L6-v2"
    st.write(f"๐Ÿ”Œ Connecting to Hugging Face model: `{model_name}`")

    embedding_model = HuggingFaceEmbeddings(model_name=model_name)

    # โœ… Manual MongoClient with TLS settings
    user = quote_plus(os.getenv("MONGO_USERNAME", "").strip())
    password = quote_plus(os.getenv("MONGO_PASSWORD", "").strip())
    cluster = os.getenv("MONGO_CLUSTER", "").strip()
    db_name = os.getenv("MONGO_DB_NAME", "files").strip()
    collection_name = os.getenv("MONGO_COLLECTION", "files_collection").strip()
    index_name = os.getenv("MONGO_VECTOR_INDEX", "vector_index").strip()

    mongo_uri = f"mongodb+srv://{user}:{password}@{cluster}/?retryWrites=true&w=majority"

    try:
        client = MongoClient(mongo_uri, tls=True, tlsAllowInvalidCertificates=True, serverSelectionTimeoutMS=20000)
        db = client[db_name]
        collection = db[collection_name]
        st.success("โœ… MongoClient connected successfully")

        return MongoDBAtlasVectorSearch(
            collection=collection,
            embedding=embedding_model,
            index_name=index_name,
        )

    except Exception as e:
        st.error("โŒ Failed to connect to MongoDB Atlas manually")
        st.error(str(e))
        raise e
# =================== Question/Headers Extraction ===================
# def extract_questions_and_headers(text: str) -> List[str]:
#     header_patterns = [
#         r'\d+\.\s+\*\*([^\*]+)\*\*',
#         r'\*\*([^*]+)\*\*',
#         r'^([A-Z][^a-z]*[A-Z])$',
#         r'^([A-Z][A-Za-z\s]{3,})$',
#         r'^[A-Z][A-Za-z\s]+:$'
#     ]
#     question_patterns = [
#         r'^.+\?$',
#         r'^\*?Please .+',
#         r'^How .+',
#         r'^What .+',
#         r'^Describe .+',
#     ]
#     combined_header_re = re.compile("|".join(header_patterns), re.MULTILINE)
#     combined_question_re = re.compile("|".join(question_patterns), re.MULTILINE)

#     headers = [match for group in combined_header_re.findall(text) for match in group if match]
#     questions = combined_question_re.findall(text)

#     return headers + questions
# def extract_with_llm(text: str) -> List[str]:
#     client = InferenceClient(api_key=HF_TOKEN.strip())
#     try:
#         response = client.chat.completions.create(
#             model="mistralai/Mistral-Nemo-Instruct-2407",  # or "HuggingFaceH4/zephyr-7b-beta"
#             messages=[
#                 {
#                     "role": "system",
#                     "content": "You are an assistant helping extract questions and headers from grant applications.",
#                 },
#                 {
#                     "role": "user",
#                     "content": (
#                         "Please extract all the grant application headers and questions from the following text. "
#                         "Include section titles, prompts, and any question-like content. Return them as a numbered list.\n\n"
#                         f"{text[:3000]}"
#                     ),
#                 },
#             ],
#             temperature=0.2,
#             max_tokens=512,
#         )
#         return [
#             line.strip("โ€ข-1234567890. ").strip()
#             for line in response.choices[0].message.content.strip().split("\n")
#             if line.strip()
#         ]
#     except Exception as e:
#         st.error("โŒ LLM extraction failed")
#         st.error(str(e))
#         return []
# def extract_with_llm_local(text: str) -> List[str]:
#     prompt = (
#         "You are an assistant helping extract useful questions and section headers from a grant application.\n"
#         "Return only the important prompts as a numbered list.\n\n"
#         "TEXT:\n"
#         f"{text[:3000]}\n\n"
#         "PROMPTS:"
#     )
#     inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
#     outputs = model.generate(
#         **inputs,
#         max_new_tokens=512,
#         temperature=0.3,
#         do_sample=False
#     )
#     raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
#     # Extract prompts from the numbered list in the output
#     lines = raw_output.split("\n")
#     prompts = []
#     for line in lines:
#         line = line.strip("โ€ข-1234567890. ").strip()
#         if len(line) > 10:
#             prompts.append(line)
#     return prompts
# def extract_with_llm_local(text: str) -> List[str]:
#     example_text = """TEXT:
# 1. Project Summary: Please describe the main goals of your project.
# 2. Contact Information: Address, phone, email.
# 3. What is the mission of your organization?
# 4. Who are the beneficiaries?
# 5. Budget Breakdown
# 6. Please describe how the funding will be used.
# 7. Website: www.example.org

# PROMPTS:
# 1. Project Summary
# 2. What is the mission of your organization?
# 3. Who are the beneficiaries?
# 4. Please describe how the funding will be used.
# """

#     prompt = (
#         "You are an assistant helping extract important grant application prompts and section headers.\n"
#         "Return only questions and meaningful section titles that require thoughtful answers.\n"
#         "Avoid metadata like phone numbers, dates, contact info, or websites.\n\n"
#         f"{example_text}\n"
#         f"TEXT:\n{text[:3000]}\n\n"
#         "PROMPTS:"
#     )

#     inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
#     outputs = model.generate(
#         **inputs,
#         max_new_tokens=512,
#         temperature=0.3,
#         do_sample=False
#     )
#     raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)

#     # Clean and extract numbered or bulleted lines
#     lines = raw_output.split("\n")
#     prompts = []
#     for line in lines:
#         clean = line.strip("โ€ข-1234567890. ").strip()
#         if len(clean) > 10 and not any(bad in clean.lower() for bad in ["phone", "email", "address", "website"]):
#             prompts.append(clean)
#     return prompts


def extract_with_llm_local(text: str, use_openai: bool = False) -> List[str]:
    # Example context to prime the model
    example_text = """TEXT:
1. Project Summary: Please describe the main goals of your project.
2. Contact Information: Address, phone, email.
3. What is the mission of your organization?
4. Who are the beneficiaries?
5. Budget Breakdown
6. Please describe how the funding will be used.
7. Website: www.example.org

PROMPTS:
1. Project Summary
2. What is the mission of your organization?
3. Who are the beneficiaries?
4. Please describe how the funding will be used.
"""

    prompt = (
        "You are an assistant helping extract important grant application prompts and section headers.\n"
        "Return only questions and meaningful section titles that require thoughtful answers.\n"
        "Avoid metadata like phone numbers, dates, contact info, or websites.\n\n"
        f"{example_text}\n"
        f"TEXT:\n{text[:3000]}\n\n"
        "PROMPTS:"
    )

    if use_openai:
        if not openai.api_key:
            st.error("โŒ OPENAI_API_KEY is not set.")
            return "โš ๏ธ OpenAI key missing."
        try:
            response = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {"role": "system", "content": "You extract prompts and headers from grant text."},
                    {"role": "user", "content": prompt},
                ],
                temperature=0.2,
                max_tokens=500,
            )
            # raw_output = response["choices"][0]["message"]["content"]
            raw_output = response.choices[0].message.content
            st.markdown(f"๐Ÿงฎ Extract Tokens: Prompt = {response.usage.prompt_tokens}, "
                f"Completion = {response.usage.completion_tokens}, Total = {response.usage.total_tokens}")
        except Exception as e:
            st.error(f"โŒ OpenAI extraction failed: {e}")
            return []
    else:
        inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
        outputs = model.generate(
            **inputs,
            max_new_tokens=512,
            temperature=0.3,
            do_sample=False,
            pad_token_id=tokenizer.eos_token_id
        )
        raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Clean and deduplicate prompts
    lines = raw_output.split("\n")
    prompts = []
    seen = set()
    for line in lines:
        clean = line.strip("โ€ข-1234567890. ").strip()
        if (
            len(clean) > 10
            and not any(bad in clean.lower() for bad in ["phone", "email", "address", "website"])
            and clean not in seen
        ):
            prompts.append(clean)
            seen.add(clean)

    return prompts


# def is_meaningful_prompt(text: str) -> bool:
#     too_short = len(text.strip()) < 10
#     banned_keywords = ["phone", "email", "fax", "address", "date", "contact", "website"]
#     contains_bad_word = any(word in text.lower() for word in banned_keywords)
#     is_just_punctuation = all(c in ":.*- " for c in text.strip())

#     return not (too_short or contains_bad_word or is_just_punctuation)

# =================== Format Retrieved Chunks ===================
def format_docs(docs: List[Document]) -> str:
    return "\n\n".join(doc.page_content or doc.metadata.get("content", "") for doc in docs)

# =================== Generate Response from Hugging Face Model ===================
# def generate_response(input_dict: Dict[str, Any]) -> str:
#     client = InferenceClient(api_key=HF_TOKEN.strip())
#     prompt = grantbuddy_prompt.format(**input_dict)

#     try:
#         response = client.chat.completions.create(
#             model="HuggingFaceH4/zephyr-7b-beta",
#             messages=[
#                 {"role": "system", "content": prompt},
#                 {"role": "user", "content": input_dict["question"]},
#             ],
#             max_tokens=1000,
#             temperature=0.2,
#         )
#         return response.choices[0].message.content
#     except Exception as e:
#         st.error(f"โŒ Error from model: {e}")
#         return "โš ๏ธ Failed to generate response. Please check your model, HF token, or request format."
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

@st.cache_resource
def load_local_model():
    model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    return tokenizer, model

tokenizer, model = load_local_model()

def generate_response(input_dict, use_openai=False, max_tokens=700):
    prompt = grantbuddy_prompt.format(**input_dict)

    if use_openai:
        try:
            response = client.chat.completions.create(
                model="gpt-4o-mini", 
                messages=[
                    {"role": "system", "content": prompt},
                    {"role": "user", "content": input_dict["question"]},
                ],
                temperature=0.2,
                max_tokens=max_tokens,
            )
            answer = response.choices[0].message.content.strip()

            # โœ… Token logging
            prompt_tokens = response.usage.prompt_tokens
            completion_tokens = response.usage.completion_tokens
            total_tokens = response.usage.total_tokens

            return {
                "answer": answer,
                "tokens": {
                    "prompt": prompt_tokens,
                    "completion": completion_tokens,
                    "total": total_tokens
                }
            }

        except Exception as e:
            st.error(f"โŒ OpenAI error: {e}")
            return {
                "answer": "โš ๏ธ OpenAI request failed.",
                "tokens": {}
            }

    else:
        inputs = tokenizer(prompt, return_tensors="pt")
        outputs = model.generate(
            **inputs,
            max_new_tokens=512,
            temperature=0.7,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return {
            "answer": decoded[len(prompt):].strip(),
            "tokens": {}
        }




# =================== RAG Chain ===================
def get_rag_chain(retriever, use_openai=False, max_tokens=700):
    def merge_contexts(inputs):
#use chunks if provided
        retrieved_chunks = format_docs(inputs["context_docs"]) if "context_docs" in inputs \
            else format_docs(retriever.invoke(inputs["question"]))

        combined = "\n\n".join(filter(None, [
            inputs.get("manual_context", ""),
            retrieved_chunks
        ]))
        return {
            "context": combined,
            "question": inputs["question"]
        }

    return RunnableLambda(merge_contexts) | RunnableLambda(
        lambda input_dict: generate_response(input_dict, use_openai=use_openai, max_tokens=max_tokens)
    )

def rerank_with_topics(chunks, topics, alpha=0.2):
    """
    Boosts similarity based on topic overlap.
    Since chunks don't have scores, we use rank order and topic matches.
    """
    topics_lower = set(t.lower() for t in topics)

    def score(chunk, rank):
        chunk_topics = [t.lower() for t in chunk.metadata.get("topics", [])]
        topic_matches = len(topics_lower.intersection(chunk_topics))
        # Lower is better: original rank minus boost
        return rank - alpha * topic_matches

    reranked = sorted(
        enumerate(chunks),
        key=lambda x: score(x[1], x[0])  # x[0] is rank, x[1] is chunk
    )
    return [chunk for _, chunk in reranked]


# =================== Streamlit UI ===================
def gate_ui():
    # Get password from secrets (optional env fallback)
    APP_PASSWORD = st.secrets.get("APP_PASSWORD", os.getenv("APP_PASSWORD", "")).strip()

    # Persist auth in session
    if "authed" not in st.session_state:
        st.session_state.authed = False

    if st.session_state.authed:
        return True

    st.title("๐Ÿ”’ Grant Buddy Login")
    pwd = st.text_input("Enter password", type="password")
    col1, col2 = st.columns([1,1])
    with col1:
        if st.button("Login"):
            if APP_PASSWORD and pwd == APP_PASSWORD:
                st.session_state.authed = True
                try:
                    st.rerun()
                except AttributeError:
                    st.experimental_rerun()
            else:
                st.error("Incorrect password.")
    with col2:
        if st.button("Forgot?"):
            st.info("Contact the admin to reset the APP_PASSWORD secret.")
    return False
# ===== RETRIEVAL SETTINGS SIDEBAR =====
def retrieval_settings():
    st.sidebar.header("Retrieval Settings")
    k_value = st.sidebar.slider("How many chunks to retrieve (k)", 5, 40, 10, 1)
    # min_score = st.sidebar.slider("Minimum relevance score", 0.0, 1.0, 0.75, 0.01)
    topics_str = st.sidebar.text_input("Optional: Focus on specific topics (comma-separated)", "")
    topic_score = st.sidebar.slider("Topic relevance score", 0.0, 1.0, 0.0, 0.01)

    st.sidebar.header("Generation Settings")
    max_tokens = st.sidebar.number_input("Max tokens in response", 100, 1500, 700, 50)
    use_openai = st.sidebar.checkbox("Use OpenAI (Costs Tokens)", value=False)

    topics = [t.strip() for t in topics_str.split(",") if t.strip()]
    return {
        "k": k_value,
        "topics": topics,
        "topic_score": topic_score,
        "max_tokens": max_tokens,
        "use_openai": use_openai
    }
def parse_topics_field(val):
    """Parses a topics field into a flat list of topics, splitting on commas and underscores."""
    if not val:
        return []
    
    # If it's already a list, normalize each entry
    if isinstance(val, list):
        topics = [str(t).strip() for t in val if str(t).strip()]
    else:
        # Split first by commas
        topics = [t.strip() for t in str(val).split(",") if t.strip()]
    
    # Now split each topic by underscores into subtopics
    topics = [sub for topic in topics for sub in topic.split("_") if sub.strip()]
    
    return topics

def resolve_item_settings(item, defaults):
    """
    Merge per-item overrides with UI defaults.
    item: dict from JSON
    defaults: dict from sidebar (k, max_tokens, use_openai, topics, topic_score)
    """
    return {
        "use_openai": bool(item.get("use_openai", defaults["use_openai"])),
        "k": int(item.get("k", defaults["k"])),
        "max_tokens": int(item.get("max_tokens", defaults["max_tokens"])),
        # rerank controls:
        "topics": parse_topics_field(item.get("topics", defaults.get("topics", []))),
        "topic_score": float(item.get("topic_weight", defaults.get("topic_score", 0.0))),
        "optional_context": item.get("optional_context", defaults.get("optional_context", "")),
    }
def run_query(query: str,
              manual_context: str,
              vectorstore,
              use_openai: bool,
              k: int = 10,
              topic_list: list[str] | None = None,
              topic_alpha: float = 0.2,
              max_tokens: int = 700):

    # Safety clamps
    k = max(1, min(int(k), 40))
    topic_alpha = max(0.0, min(float(topic_alpha), 1.0))

    # 1) Overfetch for quality
    pre_k = max(1, k * 4)
    docs_scores = vectorstore.similarity_search_with_score(query, k=pre_k)

    # 2) Soft filter + fallback
    min_score = 0.75
    filtered = [(d, s) for d, s in docs_scores if s >= min_score]
    if len(filtered) < k:
        filtered = docs_scores[:k]  # fallback to top-k regardless of score
    docs = [d for d, _ in filtered]

    # 3) Topic re-rank AFTER filtering
    if topic_list and topic_alpha > 0:
        docs = rerank_with_topics(docs, topic_list, alpha=topic_alpha)

    # 4) Dedupe + trim
    seen, final = set(), []
    for d in docs:
        cid = (d.metadata or {}).get("chunk_id") or id(d)
        if cid in seen:
            continue
        seen.add(cid)
        final.append(d)
    docs = final[:k]

    # 5) Pass to RAG chain
    rag_chain = get_rag_chain(retriever=None, use_openai=use_openai, max_tokens=max_tokens)
    combined_manual = (manual_context or "").strip()
    out = rag_chain.invoke({
        "question": query,
        "manual_context": combined_manual,
        "context_docs": docs
    })

    return {"answer": out.get("answer", ""), "tokens": out.get("tokens", {}), "docs": docs}

    
def show_chunks(docs):
    with st.expander("๐Ÿ” Retrieved Chunks", expanded=False):
        for d in docs:
            meta_outer = d.metadata if isinstance(d.metadata, dict) else {}
            inner = meta_outer.get("metadata", {}) if isinstance(meta_outer.get("metadata", {}), dict) else {}
            title = inner.get("title", "unknown")
            chunk_id = meta_outer.get("chunk_id", "unknown")
            st.markdown(f"**Chunk ID:** {chunk_id} | **Title:** {title}")
            st.markdown((d.page_content or "")[:700] + "โ€ฆ")
            st.markdown("---")


# ===== MAIN =====
def main():
    if not gate_ui():
        return

    st.title("๐Ÿค– Grant Buddy โ€” Manual / JSON Mode")
    settings = retrieval_settings()
    manual_context = st.text_area("๐Ÿ“ Optional: Global context for this run (mission, RFP notes, etc.)", height=150)
    vectorstore = init_vector_search()

    tab_manual, tab_batch = st.tabs(["โœ๏ธ Manual Mode", "๐Ÿงฉ JSON Batch Mode"])
    
    # ---- Manual Mode ----
    with tab_manual:
        st.subheader("Manual Query")
    
        uploaded_file = st.file_uploader("Upload PDF/TXT (optional)", type=["pdf", "txt"])
        uploaded_text = ""
        if uploaded_file:
            if uploaded_file.name.endswith(".pdf"):
                reader = PdfReader(uploaded_file)
                uploaded_text = "\n".join(p.extract_text() for p in reader.pages if p.extract_text())
            else:
                uploaded_text = uploaded_file.read().decode("utf-8")
    
        # Combine uploaded text with the global manual context
        combined_manual_context = "\n\n".join(
            s for s in [manual_context.strip(), uploaded_text.strip()] if s
        )
    
        query = st.text_input("Enter your question")
        if st.button("Run Manual Query"):
            if not query:
                st.warning("Please enter a question.")
            else:
                # show current settings being used
                st.write("### Retrieval/Generation Settings Used:")
                st.json(settings)
    
                result = run_query(
                    query=query,
                    manual_context=combined_manual_context,
                    vectorstore=vectorstore,
                    use_openai=settings["use_openai"],
                    k=settings["k"],
                    topic_list=settings["topics"],
                    topic_alpha=settings["topic_score"],
                    max_tokens=settings["max_tokens"]
                )
    
                st.markdown("### ๐Ÿ’ฌ Answer")
                st.write(result["answer"])
                if result["tokens"]:
                    t = result["tokens"]
                    st.caption(f"Tokens โ€” prompt: {t.get('prompt')}, completion: {t.get('completion')}, total: {t.get('total')}")
                show_chunks(result["docs"])

    # ---- JSON Batch Mode ----
    with tab_batch:
        st.subheader("Batch from JSON")
        # url="https://chatgpt.com/g/g-689b64bc10e88191bca964eea6b438a6-grant-json-builder"
        # st.subheader("Grant JSON Builder" % url)
        st.link_button("Grant JSON Builder", "https://chatgpt.com/g/g-689b64bc10e88191bca964eea6b438a6-grant-json-builder")
        json_file = st.file_uploader("Upload JSON config", type=["json"])
        if json_file:
            cfg = json.load(json_file)
            st.json(cfg)
    
            if st.button("Run Batch"):
                results = []
                # sidebar defaults
                defaults = {
                    "k": settings["k"],
                    "max_tokens": settings["max_tokens"],
                    "use_openai": settings["use_openai"],
                    "topics": settings["topics"],
                    "topic_score": settings["topic_score"],
                    "optional_context": manual_context,
                }
    
                queries = cfg.get("queries", [])
                if not queries:
                    st.warning("No 'queries' found in JSON.")
                for i, item in enumerate(queries, start=1):
                    q = (item.get("query") or "").strip()
                    if not q:
                        st.warning(f"Item {i} missing 'query'; skipping.")
                        continue
    
                    item_settings = resolve_item_settings(item, defaults)
    
                    result = run_query(
                        query=q,
                        manual_context=item_settings["optional_context"] or manual_context,   # global context
                        vectorstore=vectorstore,
                        use_openai=item_settings["use_openai"],
                        k=item_settings["k"],
                        topic_list=item_settings["topics"],
                        topic_alpha=item_settings["topic_score"],
                        max_tokens=item_settings["max_tokens"],
                    )
    
                    st.markdown(f"## ๐Ÿงฉ Query {i}")
                    st.markdown(f"**Prompt:** {q}")
                    st.caption(
                        f"Settings โ†’ use_openai={item_settings['use_openai']}, "
                        f"k={item_settings['k']}, max_tokens={item_settings['max_tokens']}, "
                        f"topic_weight={item_settings['topic_score']}, topics={item_settings['topics']}"
                    )
                    st.markdown(result["answer"])
                    if result["tokens"]:
                        t = result["tokens"]
                        st.caption(f"Tokens โ€” prompt: {t.get('prompt')}, completion: {t.get('completion')}, total: {t.get('total')}")
                    show_chunks(result["docs"])
    
                    results.append({
                        "query": q,
                        "settings": item_settings,
                        "answer": result["answer"],
                        "tokens": result["tokens"]
                    })
    
                st.download_button(
                    "๐Ÿ’พ Download results JSON",
                    data=json.dumps({"results": results}, indent=2),
                    file_name="grantbuddy_results.json",
                    mime="application/json"
                )


if __name__ == "__main__":
    main()
# def main():
#     if not gate_ui():
#         return
#     # st.set_page_config(page_title="Grant Buddy RAG", page_icon="๐Ÿค–")
#     st.title("๐Ÿค– Grant Buddy: Grant-Writing Assistant")
#     USE_OPENAI = st.sidebar.checkbox("Use OpenAI (Costs Tokens)", value=False)
#     st.sidebar.markdown("### Retrieval Settings")

#     k_value = st.sidebar.slider("How many chunks to retrieve (k)", min_value=5, max_value=40, step=5, value=10)
#     score_threshold = st.sidebar.slider("Minimum relevance score", min_value=0.0, max_value=1.0, step=0.05, value=0.75)
#     topic_input=st.sidebar.text_input("Optional: Focus on specific topics (comma-separated)")
#     topics=[t.strip() for t in topic_input.split(",") if t.strip()]
#     topic_weight= st.sidebar.slider("Topic relevance score", min_value=0.0, max_value=1.0, step=0.05, value=0.2)
#     st.sidebar.markdown("### Generation Settings")
#     max_tokens = st.sidebar.number_input("Max tokens in response", min_value=100, max_value=1500, value=700, step=50)

#     if "generated_queries" not in st.session_state:
#         st.session_state.generated_queries = {}
    
#     manual_context = st.text_area("๐Ÿ“ Optional: Add your own context (e.g., mission, goals)", height=150)
    
#     # # retriever = init_vector_search().as_retriever(search_kwargs={"k": k_value, "score_threshold": score_threshold})
#     retriever = init_vector_search().as_retriever()
#     vectorstore = init_vector_search()  

#     # pre_k = k_value*4  # Retrieve more chunks first
#     # context_docs = retriever.get_relevant_documents(query, k=pre_k)
#     # if topics:
#     #     context_docs = rerank_with_topics(context_docs, topics, alpha=topic_weight)
#     # context_docs = context_docs[:k_value]  # Final top-k used in RAG
#     rag_chain = get_rag_chain(retriever, use_openai=USE_OPENAI, max_tokens=max_tokens)

#     uploaded_file = st.file_uploader("Upload PDF or TXT for extra context (optional)", type=["pdf", "txt"])
#     uploaded_text = ""

#     if uploaded_file:
#         with st.spinner("๐Ÿ“„ Processing uploaded file..."):
#             if uploaded_file.name.endswith(".pdf"):
#                 reader = PdfReader(uploaded_file)
#                 uploaded_text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
#             elif uploaded_file.name.endswith(".txt"):
#                 uploaded_text = uploaded_file.read().decode("utf-8")

#         # extract qs and headers using llms
#         questions = extract_with_llm_local(uploaded_text, use_openai=USE_OPENAI)

#         # filter out irrelevant text
#         def is_meaningful_prompt(text: str) -> bool:
#             too_short = len(text.strip()) < 10
#             banned_keywords = ["phone", "email", "fax", "address", "date", "contact", "website"]
#             contains_bad_word = any(word in text.lower() for word in banned_keywords)
#             is_just_punctuation = all(c in ":.*- " for c in text.strip())
#             return not (too_short or contains_bad_word or is_just_punctuation)

#         filtered_questions = [q for q in questions if is_meaningful_prompt(q)]
#         with st.form("question_selection_form"):
#             st.subheader("Choose prompts to answer:")
#             selected_questions=[]
#             for i,q in enumerate(filtered_questions):
#                 if st.checkbox(q, key=f"q_{i}", value=True):
#                     selected_questions.append(q)
#             submit_button = st.form_submit_button("Submit")
            
#         #Multi-Select Question
#         if 'submit_button' in locals() and submit_button:
#             if selected_questions:
#                 with st.spinner("๐Ÿ’ก Generating answers..."):
#                     answers = []
#                     for q in selected_questions:
#                         combined_context = "\n\n".join(filter(None, [manual_context.strip(), uploaded_text.strip()]))
#                         pre_k=k_value*4
#                         context_docs=retriever.get_relevant_documents(q, k=pre_k)
#                         if topics:
#                             context_docs=rerank_with_topics(context_docs,topics,alpha=topic_weight)
#                         context_docs=context_docs[:k_value]
#                         # full_query = f"{q}\n\nAdditional context:\n{uploaded_text}"
                       
#                         if q in st.session_state.generated_queries:
#                             response = st.session_state.generated_queries[q]
#                         else:
#                             response = rag_chain.invoke({
#                                 "question": q,
#                                 "manual_context": combined_context,
#                                 "context_docs": context_docs
#                             })
#                             st.session_state.generated_queries[q] = response
#                         answers.append({"question": q, "answer": response})
#                 for item in answers:
#                     st.markdown(f"### โ“ {item['question']}")
#                     st.markdown(f"๐Ÿ’ฌ {item['answer']['answer']}")
#                     tokens = item['answer'].get("tokens", {})
#                     if tokens:
#                         st.markdown(f"๐Ÿงฎ **Token Usage:** Prompt = {tokens.get('prompt')}, "
#                         f"Completion = {tokens.get('completion')}, Total = {tokens.get('total')}")
                    
#             else:
#                 st.info("No prompts selected for answering.")

            
#     # โœ๏ธ Manual single-question input
#     query = st.text_input("Ask a grant-related question")
#     if st.button("Submit"):
#         if not query:
#             st.warning("Please enter a question.")
#             return

#         # full_query = f"{query}\n\nAdditional context:\n{uploaded_text}" if uploaded_text else query
#         pre_k = k_value * 4
#         context_docs=retriever.get_relevant_documents(query, k=pre_k)
#         if topics:
#             context_docs=rerank_with_topics(context_docs, topics, alpha=topic_weight)
#         context_docs = context_docs[:k_value]
#         combined_context = "\n\n".join(filter(None, [manual_context.strip(), uploaded_text.strip()]))
#         with st.spinner("๐Ÿค– Thinking..."):
#             # response = rag_chain.invoke(full_query)
#             response = rag_chain.invoke({"question":query,"manual_context": combined_context, "context_docs": context_docs})
#             st.text_area("Grant Buddy says:", value=response["answer"], height=250, disabled=True)
#             tokens=response.get("tokens",{})
#             if tokens:
#                  st.markdown(f"๐Ÿงฎ **Token Usage:** Prompt = {tokens.get('prompt')}, "
#                  f"Completion = {tokens.get('completion')}, Total = {tokens.get('total')}")
                
#         with st.expander("๐Ÿ” Retrieved Chunks"):
#             # context_docs = retriever.get_relevant_documents(query)
#             for doc in context_docs:
#                 # st.json(doc.metadata)
#                 st.markdown(f"**Chunk ID:** {doc.metadata.get('chunk_id', 'unknown')} | **Title:** {doc.metadata['metadata'].get('title', 'unknown')}")
#                 st.markdown(doc.page_content[:700] + "...")
#                 if topics:
#                     matched_topics=set(doc.metadata['metadata'].get('topics',[])).intersection(topics)
#                     st.markdown(f"**Matched Topics** {','.join(matched_topics)}")
#                 st.markdown("---")





# if __name__ == "__main__":
#     main()



# # app.py
# import os
# import re
# import openai
# from huggingface_hub import InferenceClient
# import json
# from huggingface_hub import HfApi
# import streamlit as st
# from typing import List, Dict, Any
# from urllib.parse import quote_plus
# from pymongo import MongoClient
# from PyPDF2 import PdfReader
# st.set_page_config(page_title="Grant Buddy RAG", page_icon="๐Ÿค–")

# from typing import List

# from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
# from langchain.embeddings import HuggingFaceEmbeddings

# from langchain_community.vectorstores import MongoDBAtlasVectorSearch
# from langchain.prompts import PromptTemplate
# from langchain.schema import Document
# from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
# from huggingface_hub import InferenceClient

# # =================== Secure Env via Hugging Face Secrets ===================
# user = quote_plus(os.getenv("MONGO_USERNAME"))
# password = quote_plus(os.getenv("MONGO_PASSWORD"))
# cluster = os.getenv("MONGO_CLUSTER")
# db_name = os.getenv("MONGO_DB_NAME", "files")
# collection_name = os.getenv("MONGO_COLLECTION", "files_collection")
# index_name = os.getenv("MONGO_VECTOR_INDEX", "vector_index")

# HF_TOKEN = os.getenv("HF_TOKEN")
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "").strip()
# if OPENAI_API_KEY:
#     openai.api_key = OPENAI_API_KEY
# from openai import OpenAI
# client = OpenAI(api_key=OPENAI_API_KEY)

# # MONGO_URI = f"mongodb+srv://{user}:{password}@{cluster}/{db_name}?retryWrites=true&w=majority"
# MONGO_URI = f"mongodb+srv://{user}:{password}@{cluster}/{db_name}?retryWrites=true&w=majority&tls=true&tlsAllowInvalidCertificates=true"


# # =================== Prompt ===================
# grantbuddy_prompt = PromptTemplate.from_template(
#     """You are Grant Buddy, a specialized language model fine-tuned with instruction-tuning and RLHF. 
# You help a nonprofit focused on social entrepreneurship, BIPOC empowerment, and edtech write clear, mission-aligned grant responses.

# **Instructions:**
# - Start with reasoning or context for your answer.
# - Always align with the nonprofitโ€™s mission.
# - Use structured formatting: headings, bullet points, numbered lists.
# - Include impact data or examples if relevant.
# - Do NOT repeat the same sentence or answer multiple times.
# - If no answer exists in the context, say: "This information is not available in the current context."

# CONTEXT:
# {context}

# QUESTION:
# {question}
# """
# )



# # =================== Vector Search Setup ===================
# @st.cache_resource
# def init_embedding_model():
#     return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    
    
# @st.cache_resource


# def init_vector_search() -> MongoDBAtlasVectorSearch:
#     HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
#     model_name = "sentence-transformers/all-MiniLM-L6-v2"
#     st.write(f"๐Ÿ”Œ Connecting to Hugging Face model: `{model_name}`")

#     embedding_model = HuggingFaceEmbeddings(model_name=model_name)

#     # โœ… Manual MongoClient with TLS settings
#     user = quote_plus(os.getenv("MONGO_USERNAME", "").strip())
#     password = quote_plus(os.getenv("MONGO_PASSWORD", "").strip())
#     cluster = os.getenv("MONGO_CLUSTER", "").strip()
#     db_name = os.getenv("MONGO_DB_NAME", "files").strip()
#     collection_name = os.getenv("MONGO_COLLECTION", "files_collection").strip()
#     index_name = os.getenv("MONGO_VECTOR_INDEX", "vector_index").strip()

#     mongo_uri = f"mongodb+srv://{user}:{password}@{cluster}/?retryWrites=true&w=majority"

#     try:
#         client = MongoClient(mongo_uri, tls=True, tlsAllowInvalidCertificates=True, serverSelectionTimeoutMS=20000)
#         db = client[db_name]
#         collection = db[collection_name]
#         st.success("โœ… MongoClient connected successfully")

#         return MongoDBAtlasVectorSearch(
#             collection=collection,
#             embedding=embedding_model,
#             index_name=index_name,
#         )

#     except Exception as e:
#         st.error("โŒ Failed to connect to MongoDB Atlas manually")
#         st.error(str(e))
#         raise e
# # =================== Question/Headers Extraction ===================
# # def extract_questions_and_headers(text: str) -> List[str]:
# #     header_patterns = [
# #         r'\d+\.\s+\*\*([^\*]+)\*\*',
# #         r'\*\*([^*]+)\*\*',
# #         r'^([A-Z][^a-z]*[A-Z])$',
# #         r'^([A-Z][A-Za-z\s]{3,})$',
# #         r'^[A-Z][A-Za-z\s]+:$'
# #     ]
# #     question_patterns = [
# #         r'^.+\?$',
# #         r'^\*?Please .+',
# #         r'^How .+',
# #         r'^What .+',
# #         r'^Describe .+',
# #     ]
# #     combined_header_re = re.compile("|".join(header_patterns), re.MULTILINE)
# #     combined_question_re = re.compile("|".join(question_patterns), re.MULTILINE)

# #     headers = [match for group in combined_header_re.findall(text) for match in group if match]
# #     questions = combined_question_re.findall(text)

# #     return headers + questions
# # def extract_with_llm(text: str) -> List[str]:
# #     client = InferenceClient(api_key=HF_TOKEN.strip())
# #     try:
# #         response = client.chat.completions.create(
# #             model="mistralai/Mistral-Nemo-Instruct-2407",  # or "HuggingFaceH4/zephyr-7b-beta"
# #             messages=[
# #                 {
# #                     "role": "system",
# #                     "content": "You are an assistant helping extract questions and headers from grant applications.",
# #                 },
# #                 {
# #                     "role": "user",
# #                     "content": (
# #                         "Please extract all the grant application headers and questions from the following text. "
# #                         "Include section titles, prompts, and any question-like content. Return them as a numbered list.\n\n"
# #                         f"{text[:3000]}"
# #                     ),
# #                 },
# #             ],
# #             temperature=0.2,
# #             max_tokens=512,
# #         )
# #         return [
# #             line.strip("โ€ข-1234567890. ").strip()
# #             for line in response.choices[0].message.content.strip().split("\n")
# #             if line.strip()
# #         ]
# #     except Exception as e:
# #         st.error("โŒ LLM extraction failed")
# #         st.error(str(e))
# #         return []
# # def extract_with_llm_local(text: str) -> List[str]:
# #     prompt = (
# #         "You are an assistant helping extract useful questions and section headers from a grant application.\n"
# #         "Return only the important prompts as a numbered list.\n\n"
# #         "TEXT:\n"
# #         f"{text[:3000]}\n\n"
# #         "PROMPTS:"
# #     )
# #     inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
# #     outputs = model.generate(
# #         **inputs,
# #         max_new_tokens=512,
# #         temperature=0.3,
# #         do_sample=False
# #     )
# #     raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
# #     # Extract prompts from the numbered list in the output
# #     lines = raw_output.split("\n")
# #     prompts = []
# #     for line in lines:
# #         line = line.strip("โ€ข-1234567890. ").strip()
# #         if len(line) > 10:
# #             prompts.append(line)
# #     return prompts
# # def extract_with_llm_local(text: str) -> List[str]:
# #     example_text = """TEXT:
# # 1. Project Summary: Please describe the main goals of your project.
# # 2. Contact Information: Address, phone, email.
# # 3. What is the mission of your organization?
# # 4. Who are the beneficiaries?
# # 5. Budget Breakdown
# # 6. Please describe how the funding will be used.
# # 7. Website: www.example.org

# # PROMPTS:
# # 1. Project Summary
# # 2. What is the mission of your organization?
# # 3. Who are the beneficiaries?
# # 4. Please describe how the funding will be used.
# # """

# #     prompt = (
# #         "You are an assistant helping extract important grant application prompts and section headers.\n"
# #         "Return only questions and meaningful section titles that require thoughtful answers.\n"
# #         "Avoid metadata like phone numbers, dates, contact info, or websites.\n\n"
# #         f"{example_text}\n"
# #         f"TEXT:\n{text[:3000]}\n\n"
# #         "PROMPTS:"
# #     )

# #     inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
# #     outputs = model.generate(
# #         **inputs,
# #         max_new_tokens=512,
# #         temperature=0.3,
# #         do_sample=False
# #     )
# #     raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)

# #     # Clean and extract numbered or bulleted lines
# #     lines = raw_output.split("\n")
# #     prompts = []
# #     for line in lines:
# #         clean = line.strip("โ€ข-1234567890. ").strip()
# #         if len(clean) > 10 and not any(bad in clean.lower() for bad in ["phone", "email", "address", "website"]):
# #             prompts.append(clean)
# #     return prompts


# def extract_with_llm_local(text: str, use_openai: bool = False) -> List[str]:
#     # Example context to prime the model
#     example_text = """TEXT:
# 1. Project Summary: Please describe the main goals of your project.
# 2. Contact Information: Address, phone, email.
# 3. What is the mission of your organization?
# 4. Who are the beneficiaries?
# 5. Budget Breakdown
# 6. Please describe how the funding will be used.
# 7. Website: www.example.org

# PROMPTS:
# 1. Project Summary
# 2. What is the mission of your organization?
# 3. Who are the beneficiaries?
# 4. Please describe how the funding will be used.
# """

#     prompt = (
#         "You are an assistant helping extract important grant application prompts and section headers.\n"
#         "Return only questions and meaningful section titles that require thoughtful answers.\n"
#         "Avoid metadata like phone numbers, dates, contact info, or websites.\n\n"
#         f"{example_text}\n"
#         f"TEXT:\n{text[:3000]}\n\n"
#         "PROMPTS:"
#     )

#     if use_openai:
#         if not openai.api_key:
#             st.error("โŒ OPENAI_API_KEY is not set.")
#             return "โš ๏ธ OpenAI key missing."
#         try:
#             response = client.chat.completions.create(
#                 model="gpt-4o-mini",
#                 messages=[
#                     {"role": "system", "content": "You extract prompts and headers from grant text."},
#                     {"role": "user", "content": prompt},
#                 ],
#                 temperature=0.2,
#                 max_tokens=500,
#             )
#             # raw_output = response["choices"][0]["message"]["content"]
#             raw_output = response.choices[0].message.content
#             st.markdown(f"๐Ÿงฎ Extract Tokens: Prompt = {response.usage.prompt_tokens}, "
#                 f"Completion = {response.usage.completion_tokens}, Total = {response.usage.total_tokens}")
#         except Exception as e:
#             st.error(f"โŒ OpenAI extraction failed: {e}")
#             return []
#     else:
#         inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
#         outputs = model.generate(
#             **inputs,
#             max_new_tokens=min(ax_tokens,512),
#             temperature=0.3,
#             do_sample=False,
#             pad_token_id=tokenizer.eos_token_id
#         )
#         raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)

#     # Clean and deduplicate prompts
#     lines = raw_output.split("\n")
#     prompts = []
#     seen = set()
#     for line in lines:
#         clean = line.strip("โ€ข-1234567890. ").strip()
#         if (
#             len(clean) > 10
#             and not any(bad in clean.lower() for bad in ["phone", "email", "address", "website"])
#             and clean not in seen
#         ):
#             prompts.append(clean)
#             seen.add(clean)

#     return prompts


# # def is_meaningful_prompt(text: str) -> bool:
# #     too_short = len(text.strip()) < 10
# #     banned_keywords = ["phone", "email", "fax", "address", "date", "contact", "website"]
# #     contains_bad_word = any(word in text.lower() for word in banned_keywords)
# #     is_just_punctuation = all(c in ":.*- " for c in text.strip())

# #     return not (too_short or contains_bad_word or is_just_punctuation)

# # =================== Format Retrieved Chunks ===================
# def format_docs(docs: List[Document]) -> str:
#     return "\n\n".join(doc.page_content or doc.metadata.get("content", "") for doc in docs)

# # =================== Generate Response from Hugging Face Model ===================
# # def generate_response(input_dict: Dict[str, Any]) -> str:
# #     client = InferenceClient(api_key=HF_TOKEN.strip())
# #     prompt = grantbuddy_prompt.format(**input_dict)

# #     try:
# #         response = client.chat.completions.create(
# #             model="HuggingFaceH4/zephyr-7b-beta",
# #             messages=[
# #                 {"role": "system", "content": prompt},
# #                 {"role": "user", "content": input_dict["question"]},
# #             ],
# #             max_tokens=1000,
# #             temperature=0.2,
# #         )
# #         return response.choices[0].message.content
# #     except Exception as e:
# #         st.error(f"โŒ Error from model: {e}")
# #         return "โš ๏ธ Failed to generate response. Please check your model, HF token, or request format."
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import torch

# @st.cache_resource
# def load_local_model():
#     model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     model = AutoModelForCausalLM.from_pretrained(model_name)
#     return tokenizer, model

# tokenizer, model = load_local_model()

# def generate_response(input_dict, use_openai=False, max_tokens=700):
#     prompt = grantbuddy_prompt.format(**input_dict)

#     if use_openai:
#         try:
#             response = client.chat.completions.create(
#                 model="gpt-4o-mini", 
#                 messages=[
#                     {"role": "system", "content": prompt},
#                     {"role": "user", "content": input_dict["question"]},
#                 ],
#                 temperature=0.2,
#                 max_tokens=max_tokens,
#             )
#             answer = response.choices[0].message.content.strip()

#             # โœ… Token logging
#             prompt_tokens = response.usage.prompt_tokens
#             completion_tokens = response.usage.completion_tokens
#             total_tokens = response.usage.total_tokens

#             return {
#                 "answer": answer,
#                 "tokens": {
#                     "prompt": prompt_tokens,
#                     "completion": completion_tokens,
#                     "total": total_tokens
#                 }
#             }

#         except Exception as e:
#             st.error(f"โŒ OpenAI error: {e}")
#             return {
#                 "answer": "โš ๏ธ OpenAI request failed.",
#                 "tokens": {}
#             }

#     else:
#         inputs = tokenizer(prompt, return_tensors="pt")
#         outputs = model.generate(
#             **inputs,
#             max_new_tokens=512,
#             temperature=0.7,
#             do_sample=True,
#             pad_token_id=tokenizer.eos_token_id
#         )
#         decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
#         return {
#             "answer": decoded[len(prompt):].strip(),
#             "tokens": {}
#         }




# # =================== RAG Chain ===================
# def get_rag_chain(retriever, use_openai=False, max_tokens=700):
#     def merge_contexts(inputs):
#         retrieved_chunks = format_docs(retriever.invoke(inputs["question"]))
#         combined = "\n\n".join(filter(None, [
#             inputs.get("manual_context", ""),
#             retrieved_chunks
#         ]))
#         return {
#             "context": combined,
#             "question": inputs["question"]
#         }

#     return RunnableLambda(merge_contexts) | RunnableLambda(
#         lambda input_dict: generate_response(input_dict, use_openai=use_openai, max_tokens=max_tokens)
#     )


# # =================== Streamlit UI ===================
# def main():
#     # st.set_page_config(page_title="Grant Buddy RAG", page_icon="๐Ÿค–")
#     st.title("๐Ÿค– Grant Buddy: Grant-Writing Assistant")
#     USE_OPENAI = st.sidebar.checkbox("Use OpenAI (Costs Tokens)", value=False)
#     st.sidebar.markdown("### Retrieval Settings")

#     k_value = st.sidebar.slider("How many chunks to retrieve (k)", min_value=5, max_value=40, step=5, value=10)
#     score_threshold = st.sidebar.slider("Minimum relevance score", min_value=0.0, max_value=1.0, step=0.05, value=0.75)

#     st.sidebar.markdown("### Generation Settings")
#     max_tokens = st.sidebar.number_input("Max tokens in response", min_value=100, max_value=1500, value=700, step=50)

#     if "generated_queries" not in st.session_state:
#         st.session_state.generated_queries = {}
    
#     manual_context = st.text_area("๐Ÿ“ Optional: Add your own context (e.g., mission, goals)", height=150)

#     retriever = init_vector_search().as_retriever(search_kwargs={"k": k_value, "score_threshold": score_threshold})
#     rag_chain = get_rag_chain(retriever, use_openai=USE_OPENAI, max_tokens=max_tokens)

#     uploaded_file = st.file_uploader("Upload PDF or TXT for extra context (optional)", type=["pdf", "txt"])
#     uploaded_text = ""

#     if uploaded_file:
#         with st.spinner("๐Ÿ“„ Processing uploaded file..."):
#             if uploaded_file.name.endswith(".pdf"):
#                 reader = PdfReader(uploaded_file)
#                 uploaded_text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
#             elif uploaded_file.name.endswith(".txt"):
#                 uploaded_text = uploaded_file.read().decode("utf-8")

#         # extract qs and headers using llms
#         questions = extract_with_llm_local(uploaded_text, use_openai=USE_OPENAI)

#         # filter out irrelevant text
#         def is_meaningful_prompt(text: str) -> bool:
#             too_short = len(text.strip()) < 10
#             banned_keywords = ["phone", "email", "fax", "address", "date", "contact", "website"]
#             contains_bad_word = any(word in text.lower() for word in banned_keywords)
#             is_just_punctuation = all(c in ":.*- " for c in text.strip())
#             return not (too_short or contains_bad_word or is_just_punctuation)

#         filtered_questions = [q for q in questions if is_meaningful_prompt(q)]
#         with st.form("question_selection_form"):
#             st.subheader("Choose prompts to answer:")
#             selected_questions=[]
#             for i,q in enumerate(filtered_questions):
#                 if st.checkbox(q, key=f"q_{i}", value=True):
#                     selected_questions.append(q)
#             submit_button = st.form_submit_button("Submit")
            
#         #Multi-Select Question
#         if 'submit_button' in locals() and submit_button:
#             if selected_questions:
#                 with st.spinner("๐Ÿ’ก Generating answers..."):
#                     answers = []
#                     for q in selected_questions:
#                         # full_query = f"{q}\n\nAdditional context:\n{uploaded_text}"
#                         combined_context = "\n\n".join(filter(None, [manual_context.strip(), uploaded_text.strip()]))
#                         if q in st.session_state.generated_queries:
#                             response = st.session_state.generated_queries[q]
#                         else:
#                             response = rag_chain.invoke({
#                                 "question": q,
#                                 "manual_context": combined_context
#                             })
#                             st.session_state.generated_queries[q] = response
#                         answers.append({"question": q, "answer": response})
#                 for item in answers:
#                     st.markdown(f"### โ“ {item['question']}")
#                     st.markdown(f"๐Ÿ’ฌ {item['answer']['answer']}")
#                     tokens = item['answer'].get("tokens", {})
#                     if tokens:
#                         st.markdown(f"๐Ÿงฎ **Token Usage:** Prompt = {tokens.get('prompt')}, "
#                         f"Completion = {tokens.get('completion')}, Total = {tokens.get('total')}")
                    
#             else:
#                 st.info("No prompts selected for answering.")

            
#     # โœ๏ธ Manual single-question input
#     query = st.text_input("Ask a grant-related question")
#     if st.button("Submit"):
#         if not query:
#             st.warning("Please enter a question.")
#             return

#         # full_query = f"{query}\n\nAdditional context:\n{uploaded_text}" if uploaded_text else query
#         combined_context = "\n\n".join(filter(None, [manual_context.strip(), uploaded_text.strip()]))
#         with st.spinner("๐Ÿค– Thinking..."):
#             # response = rag_chain.invoke(full_query)
#             response = rag_chain.invoke({"question":query,"manual_context": combined_context})
#             st.text_area("Grant Buddy says:", value=response["answer"], height=250, disabled=True)
#             tokens=response.get("tokens",{})
#             if tokens:
#                  st.markdown(f"๐Ÿงฎ **Token Usage:** Prompt = {tokens.get('prompt')}, "
#                  f"Completion = {tokens.get('completion')}, Total = {tokens.get('total')}")
                
#         with st.expander("๐Ÿ” Retrieved Chunks"):
#             context_docs = retriever.get_relevant_documents(query)
#             for doc in context_docs:
#                 # st.json(doc.metadata)
#                 st.markdown(f"**Chunk ID:** {doc.metadata.get('chunk_id', 'unknown')} | **Title:** {doc.metadata['metadata'].get('title', 'unknown')}")
#                 st.markdown(doc.page_content[:700] + "...")
#                 st.markdown("---")





# if __name__ == "__main__":
#     main()