Spaces:
Sleeping
Sleeping
# app_gradio.py | |
import gradio as gr | |
import numpy as np | |
import torch | |
import soundfile as sf | |
import os | |
import yaml | |
from dotenv import load_dotenv | |
from threading import Thread | |
# --- TTS & AI Imports --- | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
from streamer import ParlerTTSStreamer # Make sure streamer.py is available | |
from src.detection.factory import get_detector | |
from src.alerting.alert_system import get_alerter | |
# --- Load Configuration and Environment Variables --- | |
# This part is the same as our Streamlit app | |
load_dotenv() | |
config_path = 'config.yaml' | |
with open(config_path, 'r') as f: | |
config = yaml.safe_load(f) | |
secrets = { | |
"gemini_api_key": os.getenv("GEMINI_API_KEY"), | |
} | |
# --- Initialize Backend Components --- | |
print("Initializing detector and alerter...") | |
detector = get_detector(config) | |
alerter = get_alerter(config, secrets["gemini_api_key"]) | |
print("Initialization complete. Launching UI...") | |
# --- Parler-TTS Model Setup (Requires GPU) --- | |
print("Loading Parler-TTS model. This may take a moment...") | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if device == "cpu": | |
print("\nWARNING: Running Parler-TTS on a CPU will be extremely slow. A GPU is highly recommended.\n") | |
torch_dtype = torch.float16 if device != "cpu" else torch.float32 | |
# Using a smaller, faster model suitable for real-time alerts | |
repo_id = "parler-tts/parler_tts_mini_v0.1" | |
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
print("Parler-TTS model loaded.") | |
# --- Audio Streaming Generator Function --- | |
def stream_alert_audio(text_prompt): | |
""" | |
A generator function that yields audio chunks for a given text prompt. | |
This is the core of the streaming implementation. | |
""" | |
sampling_rate = model.config.sampling_rate | |
description = "Jenny is A female speaker with a clear and urgent voice." # Voice prompt for TTS | |
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device) | |
description_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) | |
# Setup the streamer | |
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0)) | |
generation_kwargs = dict( | |
input_ids=description_ids, | |
prompt_input_ids=prompt_ids, | |
streamer=streamer, | |
do_sample=True, | |
temperature=1.0, # Increase for more vocal variety | |
repetition_penalty=1.2, | |
) | |
# Run generation in a separate thread to not block the UI | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
try: | |
thread.start() | |
print(f"Audio stream started for: '{text_prompt}'") | |
# Yield audio chunks as they become available | |
for new_audio_chunk in streamer: | |
yield (sampling_rate, new_audio_chunk) | |
finally: | |
# CRITICAL: This block runs after the generator is exhausted (audio finishes) | |
# We reset the alerter state so that a new alert can be triggered later. | |
print("Audio stream finished. Resetting alerter state.") | |
alerter.reset_alert() | |
# --- Main Webcam Processing Function --- | |
def process_live_frame(frame): | |
""" | |
Processes each webcam frame, performs drowsiness detection, and | |
returns a generator for audio streaming when an alert is triggered. | |
""" | |
if frame is None: | |
return np.zeros((480, 640, 3), dtype=np.uint8), "Status: Inactive", None | |
processed_frame, indicators, _ = detector.process_frame(frame) | |
drowsiness_level = indicators.get("drowsiness_level", "Awake") | |
lighting = indicators.get("lighting", "Good") | |
score = indicators.get("details", {}).get("Score", 0) | |
# Build status text | |
status_text = f"Lighting: {lighting}\n" | |
if lighting == "Low": | |
status_text += "Detection paused due to low light." | |
else: | |
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f}" | |
# --- Alert Trigger Logic --- | |
audio_output = None | |
if drowsiness_level != "Awake": | |
# alerter.trigger_alert() returns the alert TEXT if not on cooldown, otherwise None. | |
alert_text = alerter.trigger_alert(level=drowsiness_level) | |
if alert_text: | |
# If we got text, it means we can start an alert. | |
# We return the generator function itself. Gradio will handle it. | |
audio_output = stream_alert_audio(alert_text) | |
# On subsequent frames where the user is drowsy, trigger_alert() will return None | |
# due to the cooldown, preventing a new stream from starting, which is what we want. | |
return processed_frame, status_text, audio_output | |
# --- Gradio UI Definition --- | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app: | |
gr.Markdown("# π Drive Paddy - Drowsiness Detection (Streaming)") | |
gr.Markdown("Live drowsiness detection with real-time, streaming voice alerts.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed") | |
with gr.Column(scale=1): | |
processed_output = gr.Image(label="Processed Feed") | |
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False) | |
# --- KEY CHANGE: The Audio component now uses streaming=True --- | |
audio_alert_output = gr.Audio( | |
label="Alert System", | |
autoplay=True, | |
visible=False, # Hide the player controls | |
streaming=True | |
) | |
webcam_input.stream( | |
fn=process_live_frame, | |
inputs=[webcam_input], | |
outputs=[processed_output, status_output, audio_alert_output] | |
) | |
# --- Launch the App --- | |
if __name__ == "__main__": | |
app.launch(debug=True) |