drive-paddy / app.py
Testys's picture
Update app.py
95b307f verified
raw
history blame
5.98 kB
# app_gradio.py
import gradio as gr
import numpy as np
import torch
import soundfile as sf
import os
import yaml
from dotenv import load_dotenv
from threading import Thread
# --- TTS & AI Imports ---
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from streamer import ParlerTTSStreamer # Make sure streamer.py is available
from src.detection.factory import get_detector
from src.alerting.alert_system import get_alerter
# --- Load Configuration and Environment Variables ---
# This part is the same as our Streamlit app
load_dotenv()
config_path = 'config.yaml'
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
secrets = {
"gemini_api_key": os.getenv("GEMINI_API_KEY"),
}
# --- Initialize Backend Components ---
print("Initializing detector and alerter...")
detector = get_detector(config)
alerter = get_alerter(config, secrets["gemini_api_key"])
print("Initialization complete. Launching UI...")
# --- Parler-TTS Model Setup (Requires GPU) ---
print("Loading Parler-TTS model. This may take a moment...")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device == "cpu":
print("\nWARNING: Running Parler-TTS on a CPU will be extremely slow. A GPU is highly recommended.\n")
torch_dtype = torch.float16 if device != "cpu" else torch.float32
# Using a smaller, faster model suitable for real-time alerts
repo_id = "parler-tts/parler_tts_mini_v0.1"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
print("Parler-TTS model loaded.")
# --- Audio Streaming Generator Function ---
def stream_alert_audio(text_prompt):
"""
A generator function that yields audio chunks for a given text prompt.
This is the core of the streaming implementation.
"""
sampling_rate = model.config.sampling_rate
description = "Jenny is A female speaker with a clear and urgent voice." # Voice prompt for TTS
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
description_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
# Setup the streamer
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0))
generation_kwargs = dict(
input_ids=description_ids,
prompt_input_ids=prompt_ids,
streamer=streamer,
do_sample=True,
temperature=1.0, # Increase for more vocal variety
repetition_penalty=1.2,
)
# Run generation in a separate thread to not block the UI
thread = Thread(target=model.generate, kwargs=generation_kwargs)
try:
thread.start()
print(f"Audio stream started for: '{text_prompt}'")
# Yield audio chunks as they become available
for new_audio_chunk in streamer:
yield (sampling_rate, new_audio_chunk)
finally:
# CRITICAL: This block runs after the generator is exhausted (audio finishes)
# We reset the alerter state so that a new alert can be triggered later.
print("Audio stream finished. Resetting alerter state.")
alerter.reset_alert()
# --- Main Webcam Processing Function ---
def process_live_frame(frame):
"""
Processes each webcam frame, performs drowsiness detection, and
returns a generator for audio streaming when an alert is triggered.
"""
if frame is None:
return np.zeros((480, 640, 3), dtype=np.uint8), "Status: Inactive", None
processed_frame, indicators, _ = detector.process_frame(frame)
drowsiness_level = indicators.get("drowsiness_level", "Awake")
lighting = indicators.get("lighting", "Good")
score = indicators.get("details", {}).get("Score", 0)
# Build status text
status_text = f"Lighting: {lighting}\n"
if lighting == "Low":
status_text += "Detection paused due to low light."
else:
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f}"
# --- Alert Trigger Logic ---
audio_output = None
if drowsiness_level != "Awake":
# alerter.trigger_alert() returns the alert TEXT if not on cooldown, otherwise None.
alert_text = alerter.trigger_alert(level=drowsiness_level)
if alert_text:
# If we got text, it means we can start an alert.
# We return the generator function itself. Gradio will handle it.
audio_output = stream_alert_audio(alert_text)
# On subsequent frames where the user is drowsy, trigger_alert() will return None
# due to the cooldown, preventing a new stream from starting, which is what we want.
return processed_frame, status_text, audio_output
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app:
gr.Markdown("# πŸš— Drive Paddy - Drowsiness Detection (Streaming)")
gr.Markdown("Live drowsiness detection with real-time, streaming voice alerts.")
with gr.Row():
with gr.Column(scale=2):
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
with gr.Column(scale=1):
processed_output = gr.Image(label="Processed Feed")
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
# --- KEY CHANGE: The Audio component now uses streaming=True ---
audio_alert_output = gr.Audio(
label="Alert System",
autoplay=True,
visible=False, # Hide the player controls
streaming=True
)
webcam_input.stream(
fn=process_live_frame,
inputs=[webcam_input],
outputs=[processed_output, status_output, audio_alert_output]
)
# --- Launch the App ---
if __name__ == "__main__":
app.launch(debug=True)