Spaces:
Sleeping
Sleeping
Create streamer.py
Browse files- streamer.py +137 -0
streamer.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from queue import Queue
|
2 |
+
from transformers.generation.streamers import BaseStreamer
|
3 |
+
from typing import Optional
|
4 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
class ParlerTTSStreamer(BaseStreamer):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
model: ParlerTTSForConditionalGeneration,
|
14 |
+
device: Optional[str] = None,
|
15 |
+
play_steps: Optional[int] = 10,
|
16 |
+
stride: Optional[int] = None,
|
17 |
+
timeout: Optional[float] = None,
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
|
21 |
+
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
|
22 |
+
Gradio demo).
|
23 |
+
Parameters:
|
24 |
+
model (`ParlerTTSForConditionalGeneration`):
|
25 |
+
The Parler-TTS model used to generate the audio waveform.
|
26 |
+
device (`str`, *optional*):
|
27 |
+
The torch device on which to run the computation. If `None`, will default to the device of the model.
|
28 |
+
play_steps (`int`, *optional*, defaults to 10):
|
29 |
+
The number of generation steps with which to return the generated audio array. Using fewer steps will
|
30 |
+
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
|
31 |
+
should be tuned to your device and latency requirements.
|
32 |
+
stride (`int`, *optional*):
|
33 |
+
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
|
34 |
+
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
|
35 |
+
play_steps // 6 in the audio space.
|
36 |
+
timeout (`int`, *optional*):
|
37 |
+
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
38 |
+
in `.generate()`, when it is called in a separate thread.
|
39 |
+
"""
|
40 |
+
self.decoder = model.decoder
|
41 |
+
self.audio_encoder = model.audio_encoder
|
42 |
+
self.generation_config = model.generation_config
|
43 |
+
self.device = device if device is not None else model.device
|
44 |
+
|
45 |
+
# variables used in the streaming process
|
46 |
+
self.play_steps = play_steps
|
47 |
+
if stride is not None:
|
48 |
+
self.stride = stride
|
49 |
+
else:
|
50 |
+
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
|
51 |
+
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
52 |
+
self.token_cache = None
|
53 |
+
self.to_yield = 0
|
54 |
+
|
55 |
+
# varibles used in the thread process
|
56 |
+
self.audio_queue = Queue()
|
57 |
+
self.stop_signal = None
|
58 |
+
self.timeout = timeout
|
59 |
+
|
60 |
+
def apply_delay_pattern_mask(self, input_ids):
|
61 |
+
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
|
62 |
+
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
63 |
+
input_ids[:, :1],
|
64 |
+
bos_token_id=self.generation_config.bos_token_id,
|
65 |
+
pad_token_id=self.generation_config.decoder_start_token_id,
|
66 |
+
max_length=input_ids.shape[-1],
|
67 |
+
)
|
68 |
+
# apply the pattern mask to the input ids
|
69 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
|
70 |
+
|
71 |
+
# revert the pattern delay mask by filtering the pad token id
|
72 |
+
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
|
73 |
+
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
|
74 |
+
# append the frame dimension back to the audio codes
|
75 |
+
input_ids = input_ids[None, ...]
|
76 |
+
|
77 |
+
# send the input_ids to the correct device
|
78 |
+
input_ids = input_ids.to(self.audio_encoder.device)
|
79 |
+
|
80 |
+
decode_sequentially = (
|
81 |
+
self.generation_config.bos_token_id in input_ids
|
82 |
+
or self.generation_config.pad_token_id in input_ids
|
83 |
+
or self.generation_config.eos_token_id in input_ids
|
84 |
+
)
|
85 |
+
if not decode_sequentially:
|
86 |
+
output_values = self.audio_encoder.decode(
|
87 |
+
input_ids,
|
88 |
+
audio_scales=[None],
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
sample = input_ids[:, 0]
|
92 |
+
sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
|
93 |
+
sample = sample[:, :, sample_mask]
|
94 |
+
output_values = self.audio_encoder.decode(sample[None, ...], [None])
|
95 |
+
|
96 |
+
audio_values = output_values.audio_values[0, 0]
|
97 |
+
return audio_values.cpu().float().numpy()
|
98 |
+
|
99 |
+
def put(self, value):
|
100 |
+
batch_size = value.shape[0] // self.decoder.num_codebooks
|
101 |
+
if batch_size > 1:
|
102 |
+
raise ValueError("ParlerTTSStreamer only supports batch size 1")
|
103 |
+
|
104 |
+
if self.token_cache is None:
|
105 |
+
self.token_cache = value
|
106 |
+
else:
|
107 |
+
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
|
108 |
+
|
109 |
+
if self.token_cache.shape[-1] % self.play_steps == 0:
|
110 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
111 |
+
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
112 |
+
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
113 |
+
|
114 |
+
def end(self):
|
115 |
+
"""Flushes any remaining cache and appends the stop symbol."""
|
116 |
+
if self.token_cache is not None:
|
117 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
118 |
+
else:
|
119 |
+
audio_values = np.zeros(self.to_yield)
|
120 |
+
|
121 |
+
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
|
122 |
+
|
123 |
+
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
124 |
+
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
|
125 |
+
self.audio_queue.put(audio, timeout=self.timeout)
|
126 |
+
if stream_end:
|
127 |
+
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
|
128 |
+
|
129 |
+
def __iter__(self):
|
130 |
+
return self
|
131 |
+
|
132 |
+
def __next__(self):
|
133 |
+
value = self.audio_queue.get(timeout=self.timeout)
|
134 |
+
if not isinstance(value, np.ndarray) and value == self.stop_signal:
|
135 |
+
raise StopIteration()
|
136 |
+
else:
|
137 |
+
return value
|