Spaces:
Sleeping
Sleeping
Create streamer.py
Browse files- streamer.py +137 -0
streamer.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from queue import Queue
|
| 2 |
+
from transformers.generation.streamers import BaseStreamer
|
| 3 |
+
from typing import Optional
|
| 4 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
| 5 |
+
import numpy as np
|
| 6 |
+
import math
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ParlerTTSStreamer(BaseStreamer):
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
model: ParlerTTSForConditionalGeneration,
|
| 14 |
+
device: Optional[str] = None,
|
| 15 |
+
play_steps: Optional[int] = 10,
|
| 16 |
+
stride: Optional[int] = None,
|
| 17 |
+
timeout: Optional[float] = None,
|
| 18 |
+
):
|
| 19 |
+
"""
|
| 20 |
+
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
|
| 21 |
+
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
|
| 22 |
+
Gradio demo).
|
| 23 |
+
Parameters:
|
| 24 |
+
model (`ParlerTTSForConditionalGeneration`):
|
| 25 |
+
The Parler-TTS model used to generate the audio waveform.
|
| 26 |
+
device (`str`, *optional*):
|
| 27 |
+
The torch device on which to run the computation. If `None`, will default to the device of the model.
|
| 28 |
+
play_steps (`int`, *optional*, defaults to 10):
|
| 29 |
+
The number of generation steps with which to return the generated audio array. Using fewer steps will
|
| 30 |
+
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
|
| 31 |
+
should be tuned to your device and latency requirements.
|
| 32 |
+
stride (`int`, *optional*):
|
| 33 |
+
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
|
| 34 |
+
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
|
| 35 |
+
play_steps // 6 in the audio space.
|
| 36 |
+
timeout (`int`, *optional*):
|
| 37 |
+
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
| 38 |
+
in `.generate()`, when it is called in a separate thread.
|
| 39 |
+
"""
|
| 40 |
+
self.decoder = model.decoder
|
| 41 |
+
self.audio_encoder = model.audio_encoder
|
| 42 |
+
self.generation_config = model.generation_config
|
| 43 |
+
self.device = device if device is not None else model.device
|
| 44 |
+
|
| 45 |
+
# variables used in the streaming process
|
| 46 |
+
self.play_steps = play_steps
|
| 47 |
+
if stride is not None:
|
| 48 |
+
self.stride = stride
|
| 49 |
+
else:
|
| 50 |
+
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
|
| 51 |
+
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
| 52 |
+
self.token_cache = None
|
| 53 |
+
self.to_yield = 0
|
| 54 |
+
|
| 55 |
+
# varibles used in the thread process
|
| 56 |
+
self.audio_queue = Queue()
|
| 57 |
+
self.stop_signal = None
|
| 58 |
+
self.timeout = timeout
|
| 59 |
+
|
| 60 |
+
def apply_delay_pattern_mask(self, input_ids):
|
| 61 |
+
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
|
| 62 |
+
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
| 63 |
+
input_ids[:, :1],
|
| 64 |
+
bos_token_id=self.generation_config.bos_token_id,
|
| 65 |
+
pad_token_id=self.generation_config.decoder_start_token_id,
|
| 66 |
+
max_length=input_ids.shape[-1],
|
| 67 |
+
)
|
| 68 |
+
# apply the pattern mask to the input ids
|
| 69 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
|
| 70 |
+
|
| 71 |
+
# revert the pattern delay mask by filtering the pad token id
|
| 72 |
+
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
|
| 73 |
+
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
|
| 74 |
+
# append the frame dimension back to the audio codes
|
| 75 |
+
input_ids = input_ids[None, ...]
|
| 76 |
+
|
| 77 |
+
# send the input_ids to the correct device
|
| 78 |
+
input_ids = input_ids.to(self.audio_encoder.device)
|
| 79 |
+
|
| 80 |
+
decode_sequentially = (
|
| 81 |
+
self.generation_config.bos_token_id in input_ids
|
| 82 |
+
or self.generation_config.pad_token_id in input_ids
|
| 83 |
+
or self.generation_config.eos_token_id in input_ids
|
| 84 |
+
)
|
| 85 |
+
if not decode_sequentially:
|
| 86 |
+
output_values = self.audio_encoder.decode(
|
| 87 |
+
input_ids,
|
| 88 |
+
audio_scales=[None],
|
| 89 |
+
)
|
| 90 |
+
else:
|
| 91 |
+
sample = input_ids[:, 0]
|
| 92 |
+
sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
|
| 93 |
+
sample = sample[:, :, sample_mask]
|
| 94 |
+
output_values = self.audio_encoder.decode(sample[None, ...], [None])
|
| 95 |
+
|
| 96 |
+
audio_values = output_values.audio_values[0, 0]
|
| 97 |
+
return audio_values.cpu().float().numpy()
|
| 98 |
+
|
| 99 |
+
def put(self, value):
|
| 100 |
+
batch_size = value.shape[0] // self.decoder.num_codebooks
|
| 101 |
+
if batch_size > 1:
|
| 102 |
+
raise ValueError("ParlerTTSStreamer only supports batch size 1")
|
| 103 |
+
|
| 104 |
+
if self.token_cache is None:
|
| 105 |
+
self.token_cache = value
|
| 106 |
+
else:
|
| 107 |
+
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
|
| 108 |
+
|
| 109 |
+
if self.token_cache.shape[-1] % self.play_steps == 0:
|
| 110 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
| 111 |
+
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
| 112 |
+
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
| 113 |
+
|
| 114 |
+
def end(self):
|
| 115 |
+
"""Flushes any remaining cache and appends the stop symbol."""
|
| 116 |
+
if self.token_cache is not None:
|
| 117 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
| 118 |
+
else:
|
| 119 |
+
audio_values = np.zeros(self.to_yield)
|
| 120 |
+
|
| 121 |
+
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
|
| 122 |
+
|
| 123 |
+
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
| 124 |
+
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
|
| 125 |
+
self.audio_queue.put(audio, timeout=self.timeout)
|
| 126 |
+
if stream_end:
|
| 127 |
+
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
|
| 128 |
+
|
| 129 |
+
def __iter__(self):
|
| 130 |
+
return self
|
| 131 |
+
|
| 132 |
+
def __next__(self):
|
| 133 |
+
value = self.audio_queue.get(timeout=self.timeout)
|
| 134 |
+
if not isinstance(value, np.ndarray) and value == self.stop_signal:
|
| 135 |
+
raise StopIteration()
|
| 136 |
+
else:
|
| 137 |
+
return value
|