File size: 6,326 Bytes
e65b3b4
f7db860
e65b3b4
 
 
e8a0692
e65b3b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7db860
e65b3b4
 
f7db860
e65b3b4
f7db860
e65b3b4
 
 
 
f7db860
e65b3b4
 
 
 
f7db860
e65b3b4
 
 
 
deefd7f
e65b3b4
 
 
 
f7db860
e65b3b4
 
f7db860
e65b3b4
f7db860
e65b3b4
f7db860
e65b3b4
 
 
 
f7db860
e65b3b4
 
 
f7db860
e65b3b4
 
 
 
 
 
 
 
72cf232
f7db860
e65b3b4
 
 
 
deefd7f
 
e65b3b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# main.py
import os
import sys
from gradio_interface import GradioWebRTCInterface
from dotenv import load_dotenv

load_dotenv()

def check_opencv_installation():
    """Check if OpenCV is properly installed with required cascades"""
    try:
        import cv2
        
        # Check for required cascade files
        cascade_files = [
            'haarcascade_frontalface_default.xml',
            'haarcascade_eye.xml',
            'haarcascade_smile.xml'
        ]
        
        missing_cascades = []
        for cascade in cascade_files:
            cascade_path = cv2.data.haarcascades + cascade
            if not os.path.exists(cascade_path):
                missing_cascades.append(cascade)
        
        if missing_cascades:
            print(f"❌ Missing OpenCV cascade files: {missing_cascades}")
            print("πŸ’‘ Please reinstall OpenCV: pip install opencv-python")
            return False
        
        print("βœ… OpenCV and required cascade files found!")
        return True
        
    except ImportError:
        print("❌ OpenCV not found. Please install: pip install opencv-python")
        return False

def check_optional_dependencies():
    """Check for optional dependencies and provide info"""
    optional_deps = {
        'mediapipe': 'Enhanced facial landmark detection',
        'google.generativeai': 'AI-powered voice alerts',
        'scipy': 'Advanced mathematical computations'
    }
    
    available = []
    missing = []
    
    for dep, description in optional_deps.items():
        try:
            __import__(dep)
            available.append(f"βœ… {dep} - {description}")
        except ImportError:
            missing.append(f"βšͺ {dep} - {description}")
    
    if available:
        print("πŸ“¦ Available optional features:")
        for item in available:
            print(f"   {item}")
    
    if missing:
        print("πŸ“¦ Optional features (install for enhanced functionality):")
        for item in missing:
            print(f"   {item}")

def main():
    """Main entry point"""
    print("πŸš— Starting AI Driver Drowsiness Detection System...")
    print("πŸ”§ Using OpenCV-based detection (no external model downloads required)")
    
    if not check_opencv_installation():
        sys.exit(1)
    
    check_optional_dependencies()
    
    print("\nπŸš€ All core requirements satisfied!")
    
    # Create and launch interface
    try:
        interface_manager = GradioWebRTCInterface()
        demo = interface_manager.create_interface()
        
        print("🌐 Launching Gradio interface...")
        print("πŸ“± The interface will be available in your browser")
        print("πŸ”— A public link will be generated for sharing")
        
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=True,
            show_error=True,
            enable_queue=True,
            max_threads=10,
            favicon_path=None
        )
        
    except Exception as e:
        print(f"❌ Error launching interface: {e}")
        print("πŸ’‘ Try running: pip install --upgrade gradio")
        sys.exit(1)

if __name__ == "__main__":
    main()

# requirements.txt
"""
opencv-python>=4.5.0
gradio>=4.0.0
numpy>=1.21.0
scipy>=1.7.0
google-generativeai>=0.3.0
mediapipe>=0.10.0  # Optional for enhanced detection
"""

# README.md
"""
# πŸš— AI Driver Drowsiness Detection System

A real-time drowsiness detection system using computer vision and AI-powered alerts.

## ✨ Features

- **No External Downloads**: Uses OpenCV's built-in face detection models
- **Real-time Processing**: WebRTC streaming for low latency
- **Multi-modal Detection**: Eyes, mouth, and head pose analysis
- **AI Voice Alerts**: Contextual messages powered by Gemini AI
- **Adaptive System**: Graceful fallback without external dependencies
- **Easy Setup**: Simple pip install, no model downloads required

## πŸš€ Quick Start

1. **Install dependencies:**
   ```bash
   pip install opencv-python gradio numpy scipy google-generativeai
   
   # Optional for enhanced detection:
   pip install mediapipe
   ```

2. **Run the system:**
   ```bash
   python main.py
   ```

3. **Open browser** and navigate to the provided URL

4. **Optional**: Enter Gemini API key for AI-powered voice alerts

## πŸ”§ How It Works

### Detection Methods
- **Primary**: MediaPipe Face Mesh (if available) for precise landmarks
- **Fallback**: OpenCV Haar Cascades for basic face/eye/mouth detection
- **Hybrid Approach**: Automatically selects best available method

### Drowsiness Indicators
- **Eye Aspect Ratio (EAR)**: Detects eye closure patterns
- **Mouth Aspect Ratio (MAR)**: Identifies yawning behavior
- **Head Pose**: Tracks head nodding and position

### Alert System
- **AI-Generated**: Contextual messages via Gemini
- **Audio Alerts**: Attention-grabbing beep patterns
- **Visual Feedback**: Real-time overlay on video stream
- **Smart Cooldown**: Prevents alert spam

## βš™οΈ Configuration

### Detection Thresholds
- **EAR Threshold**: 0.20 (adjustable for sensitivity)
- **MAR Threshold**: 0.8 (calibrated for yawn detection)
- **Head Nod**: 20Β° deviation threshold
- **Alert Cooldown**: 8 seconds between alerts

### Performance Optimization
- **Stream Rate**: 10 FPS processing (configurable)
- **Queue Management**: Prevents frame backlog
- **Multi-threading**: Separate processing pipeline
- **Graceful Degradation**: Maintains functionality with limited resources

## πŸ›‘οΈ Safety Notice

**This system is for demonstration and research purposes only.**

- Not a substitute for responsible driving practices
- Always pull over safely if feeling drowsy
- Use as supplementary tool alongside other safety measures
- Ensure proper camera setup and lighting

## πŸ“‹ System Requirements

- **Python**: 3.7+
- **Camera**: Webcam or built-in camera
- **OS**: Windows, macOS, Linux
- **RAM**: 4GB+ recommended
- **CPU**: Multi-core recommended for real-time processing

## πŸ” Troubleshooting

- **No face detected**: Check lighting and camera position
- **Poor detection**: Ensure face is clearly visible and well-lit
- **High CPU usage**: Reduce stream rate or video resolution
- **Audio issues**: Check browser permissions and audio settings

## πŸ“ License

MIT License - See LICENSE file for details
"""