Spaces:
Runtime error
Runtime error
File size: 18,835 Bytes
deefd7f f7db860 deefd7f f7db860 e8a0692 f7db860 deefd7f f7db860 deefd7f f7db860 deefd7f f7db860 72cf232 f7db860 deefd7f f7db860 deefd7f f7db860 deefd7f f7db860 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import cv2
import numpy as np
import dlib
import gradio as gr
import threading
import time
import queue
import pygame
import io
import google.generativeai as genai
from scipy.spatial import distance as dist
from collections import deque
import tempfile
import os
from datetime import datetime
class DrowsinessDetector:
def __init__(self, gemini_api_key=None):
# Initialize face detector and landmark predictor
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
# EAR (Eye Aspect Ratio) parameters
self.EAR_THRESHOLD = 0.25
self.EAR_CONSECUTIVE_FRAMES = 20
self.ear_counter = 0
self.ear_history = deque(maxlen=30)
# Yawn detection parameters
self.YAWN_THRESHOLD = 0.6
self.YAWN_CONSECUTIVE_FRAMES = 15
self.yawn_counter = 0
self.yawn_history = deque(maxlen=30)
# Head pose estimation parameters
self.NOD_THRESHOLD = 15
self.nod_counter = 0
self.head_pose_history = deque(maxlen=30)
# Alert system
self.drowsy_alert = False
self.last_alert_time = 0
self.alert_cooldown = 10 # seconds
# Initialize pygame for audio
pygame.mixer.init()
# Initialize Gemini AI
if gemini_api_key:
genai.configure(api_key=gemini_api_key)
self.model = genai.GenerativeModel('gemini-pro')
else:
self.model = None
# Eye and mouth landmark indices
self.LEFT_EYE = list(range(36, 42))
self.RIGHT_EYE = list(range(42, 48))
self.MOUTH = list(range(48, 68))
# 3D model points for head pose estimation
self.model_points = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -330.0, -65.0), # Chin
(-225.0, 170.0, -135.0), # Left eye left corner
(225.0, 170.0, -135.0), # Right eye right corner
(-150.0, -150.0, -125.0), # Left Mouth corner
(150.0, -150.0, -125.0) # Right mouth corner
])
self.status_log = deque(maxlen=100)
def calculate_ear(self, eye_landmarks):
"""Calculate Eye Aspect Ratio"""
# Vertical eye landmarks
A = dist.euclidean(eye_landmarks[1], eye_landmarks[5])
B = dist.euclidean(eye_landmarks[2], eye_landmarks[4])
# Horizontal eye landmark
C = dist.euclidean(eye_landmarks[0], eye_landmarks[3])
# EAR calculation
ear = (A + B) / (2.0 * C)
return ear
def calculate_mar(self, mouth_landmarks):
"""Calculate Mouth Aspect Ratio for yawn detection"""
# Vertical mouth landmarks
A = dist.euclidean(mouth_landmarks[2], mouth_landmarks[10]) # 50, 58
B = dist.euclidean(mouth_landmarks[4], mouth_landmarks[8]) # 52, 56
# Horizontal mouth landmark
C = dist.euclidean(mouth_landmarks[0], mouth_landmarks[6]) # 48, 54
# MAR calculation
mar = (A + B) / (2.0 * C)
return mar
def get_head_pose(self, landmarks, img_size):
"""Estimate head pose using facial landmarks"""
image_points = np.array([
(landmarks[30][0], landmarks[30][1]), # Nose tip
(landmarks[8][0], landmarks[8][1]), # Chin
(landmarks[36][0], landmarks[36][1]), # Left eye left corner
(landmarks[45][0], landmarks[45][1]), # Right eye right corner
(landmarks[48][0], landmarks[48][1]), # Left Mouth corner
(landmarks[54][0], landmarks[54][1]) # Right mouth corner
], dtype="double")
# Camera internals
focal_length = img_size[1]
center = (img_size[1]/2, img_size[0]/2)
camera_matrix = np.array([
[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]], dtype="double")
dist_coeffs = np.zeros((4,1)) # Assuming no lens distortion
# Solve PnP
(success, rotation_vector, translation_vector) = cv2.solvePnP(
self.model_points, image_points, camera_matrix, dist_coeffs,
flags=cv2.SOLVEPNP_ITERATIVE)
# Convert rotation vector to rotation matrix
(rotation_matrix, jacobian) = cv2.Rodrigues(rotation_vector)
# Calculate Euler angles
sy = np.sqrt(rotation_matrix[0,0] * rotation_matrix[0,0] + rotation_matrix[1,0] * rotation_matrix[1,0])
singular = sy < 1e-6
if not singular:
x = np.arctan2(rotation_matrix[2,1], rotation_matrix[2,2])
y = np.arctan2(-rotation_matrix[2,0], sy)
z = np.arctan2(rotation_matrix[1,0], rotation_matrix[0,0])
else:
x = np.arctan2(-rotation_matrix[1,2], rotation_matrix[1,1])
y = np.arctan2(-rotation_matrix[2,0], sy)
z = 0
# Convert to degrees
angles = np.array([x, y, z]) * 180.0 / np.pi
return angles
def generate_voice_alert(self, alert_type, severity="medium"):
"""Generate voice alert using Gemini AI"""
if not self.model:
return self.play_default_alert()
try:
prompts = {
"drowsy": f"Generate a brief, urgent but caring voice alert (max 15 words) to wake up a drowsy driver. Severity: {severity}. Make it sound natural and concerned.",
"yawn": f"Generate a brief, gentle voice alert (max 12 words) for a driver who is yawning frequently. Severity: {severity}. Sound caring but alert.",
"nod": f"Generate a brief, firm voice alert (max 12 words) for a driver whose head is nodding. Severity: {severity}. Sound urgent but supportive."
}
response = self.model.generate_content(prompts.get(alert_type, prompts["drowsy"]))
alert_text = response.text.strip().replace('"', '').replace("'", "")
# Use text-to-speech (you would need to install pyttsx3 or use cloud TTS)
# For this example, we'll use a placeholder
self.log_status(f"π ALERT: {alert_text}")
return alert_text
except Exception as e:
self.log_status(f"Error generating alert: {str(e)}")
return self.play_default_alert()
def play_default_alert(self):
"""Play default beep alert"""
try:
# Generate a simple beep sound
duration = 0.5 # seconds
freq = 800 # Hz
sample_rate = 22050
frames = int(duration * sample_rate)
arr = np.zeros(frames)
for i in range(frames):
arr[i] = np.sin(2 * np.pi * freq * i / sample_rate)
arr = (arr * 32767).astype(np.int16)
sound = pygame.sndarray.make_sound(arr)
sound.play()
alert_text = "β οΈ WAKE UP! Please stay alert while driving!"
self.log_status(f"π {alert_text}")
return alert_text
except Exception as e:
self.log_status(f"Error playing alert: {str(e)}")
return "Alert system activated"
def log_status(self, message):
"""Log status messages with timestamp"""
timestamp = datetime.now().strftime("%H:%M:%S")
self.status_log.append(f"[{timestamp}] {message}")
def detect_drowsiness(self, frame):
"""Main drowsiness detection function"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.detector(gray)
status_text = []
alert_message = ""
if len(faces) == 0:
status_text.append("π€ No face detected")
self.log_status("No face detected in frame")
return frame, status_text, alert_message
for face in faces:
landmarks = self.predictor(gray, face)
landmarks = np.array([[p.x, p.y] for p in landmarks.parts()])
# Draw face rectangle
x, y, w, h = face.left(), face.top(), face.width(), face.height()
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Eye Aspect Ratio calculation
left_eye = landmarks[self.LEFT_EYE]
right_eye = landmarks[self.RIGHT_EYE]
left_ear = self.calculate_ear(left_eye)
right_ear = self.calculate_ear(right_eye)
ear = (left_ear + right_ear) / 2.0
self.ear_history.append(ear)
# Draw eye contours
cv2.drawContours(frame, [cv2.convexHull(left_eye)], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [cv2.convexHull(right_eye)], -1, (0, 255, 0), 1)
# Yawn detection
mouth = landmarks[self.MOUTH]
mar = self.calculate_mar(mouth)
self.yawn_history.append(mar)
# Draw mouth contour
cv2.drawContours(frame, [cv2.convexHull(mouth)], -1, (0, 255, 255), 1)
# Head pose estimation
head_angles = self.get_head_pose(landmarks, frame.shape)
self.head_pose_history.append(head_angles[0]) # Pitch angle
# Drowsiness detection logic
drowsy_indicators = []
# Check EAR
if ear < self.EAR_THRESHOLD:
self.ear_counter += 1
if self.ear_counter >= self.EAR_CONSECUTIVE_FRAMES:
drowsy_indicators.append("EYES_CLOSED")
status_text.append(f"ποΈ Eyes closed! EAR: {ear:.3f}")
else:
self.ear_counter = 0
status_text.append(f"ποΈ Eyes open - EAR: {ear:.3f}")
# Check for yawning
if mar > self.YAWN_THRESHOLD:
self.yawn_counter += 1
if self.yawn_counter >= self.YAWN_CONSECUTIVE_FRAMES:
drowsy_indicators.append("YAWNING")
status_text.append(f"π₯± Yawning detected! MAR: {mar:.3f}")
else:
self.yawn_counter = 0
status_text.append(f"π Normal mouth - MAR: {mar:.3f}")
# Check head nodding
if abs(head_angles[0]) > self.NOD_THRESHOLD:
self.nod_counter += 1
if self.nod_counter >= 10:
drowsy_indicators.append("HEAD_NOD")
status_text.append(f"π Head nodding! Angle: {head_angles[0]:.1f}Β°")
else:
self.nod_counter = 0
status_text.append(f"π Head pose - Pitch: {head_angles[0]:.1f}Β°")
# Generate alerts
current_time = time.time()
if drowsy_indicators and (current_time - self.last_alert_time) > self.alert_cooldown:
self.drowsy_alert = True
self.last_alert_time = current_time
# Determine alert type and severity
if "EYES_CLOSED" in drowsy_indicators:
severity = "high" if len(drowsy_indicators) > 1 else "medium"
alert_message = self.generate_voice_alert("drowsy", severity)
elif "YAWNING" in drowsy_indicators:
alert_message = self.generate_voice_alert("yawn", "medium")
elif "HEAD_NOD" in drowsy_indicators:
alert_message = self.generate_voice_alert("nod", "medium")
# Visual alert on frame
cv2.putText(frame, "β οΈ DROWSINESS ALERT! β οΈ", (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 3)
# Draw landmark points
for (x, y) in landmarks:
cv2.circle(frame, (x, y), 1, (255, 255, 255), -1)
# Add metrics overlay
cv2.putText(frame, f"EAR: {ear:.3f}", (10, frame.shape[0] - 80),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"MAR: {mar:.3f}", (10, frame.shape[0] - 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"Head: {head_angles[0]:.1f}Β°", (10, frame.shape[0] - 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
return frame, status_text, alert_message
def create_gradio_interface():
"""Create Gradio interface for the drowsiness detection system"""
# Global detector instance
detector = None
def initialize_system(gemini_key):
"""Initialize the drowsiness detection system"""
global detector
try:
detector = DrowsinessDetector(gemini_key if gemini_key.strip() else None)
return "β
System initialized successfully!", "System ready for detection."
except Exception as e:
return f"β Error initializing system: {str(e)}", "System initialization failed."
def process_video_frame(frame, gemini_key):
"""Process a single video frame"""
global detector
if detector is None:
detector = DrowsinessDetector(gemini_key if gemini_key.strip() else None)
try:
processed_frame, status_list, alert_msg = detector.detect_drowsiness(frame)
# Format status text
status_text = "\n".join(status_list) if status_list else "Processing..."
# Get recent logs
log_text = "\n".join(list(detector.status_log)[-10:]) if detector.status_log else "No logs yet."
return processed_frame, status_text, alert_msg, log_text
except Exception as e:
error_msg = f"Error processing frame: {str(e)}"
return frame, error_msg, "", error_msg
# Create the Gradio interface
with gr.Blocks(title="Driver Drowsiness Detection System", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Real-time Driver Drowsiness Detection System
This system uses computer vision and AI to detect driver drowsiness through:
- **Eye Aspect Ratio (EAR)** - Detects closed/droopy eyes
- **Mouth Aspect Ratio (MAR)** - Detects yawning
- **Head Pose Estimation** - Detects head nodding
- **AI Voice Alerts** - Uses Gemini AI for personalized wake-up messages
### π Setup Instructions:
1. Download `shape_predictor_68_face_landmarks.dat` from [dlib models](http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2)
2. Place it in the same directory as this script
3. (Optional) Enter your Gemini API key for AI-powered voice alerts
4. Start your webcam and begin monitoring!
""")
with gr.Row():
with gr.Column(scale=2):
# Gemini API key input
gemini_key_input = os.getenv('GEMINI_API_KEY')
# Initialize button
init_btn = gr.Button("π Initialize System", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Column(scale=1):
# System info
gr.Markdown("""
### π Detection Thresholds:
- **EAR Threshold**: 0.25
- **Yawn Threshold**: 0.6
- **Head Nod**: 15Β° deviation
- **Alert Cooldown**: 10 seconds
""")
with gr.Row():
with gr.Column(scale=2):
# Video input/output
video_input = gr.Video(
sources=["webcam"],
label="πΉ Camera Feed",
streaming=True
)
with gr.Column(scale=1):
# Status displays
current_status = gr.Textbox(
label="π Current Status",
lines=6,
interactive=False
)
alert_display = gr.Textbox(
label="π Latest Alert",
interactive=False,
placeholder="No alerts yet..."
)
system_logs = gr.Textbox(
label="π System Logs",
lines=8,
interactive=False,
placeholder="System logs will appear here..."
)
# Event handlers
init_btn.click(
fn=initialize_system,
inputs=[gemini_key_input],
outputs=[init_status, alert_display]
)
video_input.stream(
fn=process_video_frame,
inputs=[video_input, gemini_key_input],
outputs=[video_input, current_status, alert_display, system_logs],
stream_every=0.1, # Process every 100ms
show_progress=False
)
# Instructions
gr.Markdown("""
### π§ Troubleshooting:
- **No face detected**: Ensure good lighting and face is visible to camera
- **Poor detection**: Adjust camera angle and distance (arm's length recommended)
- **No alerts**: Check if Gemini API key is valid (optional feature)
- **High CPU usage**: Reduce video resolution or increase stream interval
### β οΈ Safety Notice:
This system is for demonstration purposes. Always prioritize real-world driving safety measures.
Pull over safely if you feel drowsy while driving.
""")
return demo
# Main execution
if __name__ == "__main__":
# Check for required files
if not os.path.exists('shape_predictor_68_face_landmarks.dat'):
print("β Missing required file: shape_predictor_68_face_landmarks.dat")
print("π₯ Please download from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2")
print("π Extract and place in the same directory as this script")
else:
print("β
All required files found!")
# Create and launch the interface
demo = create_gradio_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |