File size: 18,835 Bytes
deefd7f
f7db860
 
 
 
deefd7f
f7db860
 
 
 
 
 
 
 
 
e8a0692
f7db860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deefd7f
f7db860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deefd7f
f7db860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deefd7f
f7db860
 
 
 
 
 
 
72cf232
f7db860
 
 
 
 
 
 
 
 
 
 
 
 
deefd7f
f7db860
deefd7f
f7db860
deefd7f
f7db860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import cv2
import numpy as np
import dlib
import gradio as gr
import threading
import time
import queue
import pygame
import io
import google.generativeai as genai
from scipy.spatial import distance as dist
from collections import deque
import tempfile
import os
from datetime import datetime

class DrowsinessDetector:
    def __init__(self, gemini_api_key=None):
        # Initialize face detector and landmark predictor
        self.detector = dlib.get_frontal_face_detector()
        self.predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
        
        # EAR (Eye Aspect Ratio) parameters
        self.EAR_THRESHOLD = 0.25
        self.EAR_CONSECUTIVE_FRAMES = 20
        self.ear_counter = 0
        self.ear_history = deque(maxlen=30)
        
        # Yawn detection parameters
        self.YAWN_THRESHOLD = 0.6
        self.YAWN_CONSECUTIVE_FRAMES = 15
        self.yawn_counter = 0
        self.yawn_history = deque(maxlen=30)
        
        # Head pose estimation parameters
        self.NOD_THRESHOLD = 15
        self.nod_counter = 0
        self.head_pose_history = deque(maxlen=30)
        
        # Alert system
        self.drowsy_alert = False
        self.last_alert_time = 0
        self.alert_cooldown = 10  # seconds
        
        # Initialize pygame for audio
        pygame.mixer.init()
        
        # Initialize Gemini AI
        if gemini_api_key:
            genai.configure(api_key=gemini_api_key)
            self.model = genai.GenerativeModel('gemini-pro')
        else:
            self.model = None
        
        # Eye and mouth landmark indices
        self.LEFT_EYE = list(range(36, 42))
        self.RIGHT_EYE = list(range(42, 48))
        self.MOUTH = list(range(48, 68))
        
        # 3D model points for head pose estimation
        self.model_points = np.array([
            (0.0, 0.0, 0.0),             # Nose tip
            (0.0, -330.0, -65.0),        # Chin
            (-225.0, 170.0, -135.0),     # Left eye left corner
            (225.0, 170.0, -135.0),      # Right eye right corner
            (-150.0, -150.0, -125.0),    # Left Mouth corner
            (150.0, -150.0, -125.0)      # Right mouth corner
        ])
        
        self.status_log = deque(maxlen=100)
        
    def calculate_ear(self, eye_landmarks):
        """Calculate Eye Aspect Ratio"""
        # Vertical eye landmarks
        A = dist.euclidean(eye_landmarks[1], eye_landmarks[5])
        B = dist.euclidean(eye_landmarks[2], eye_landmarks[4])
        # Horizontal eye landmark
        C = dist.euclidean(eye_landmarks[0], eye_landmarks[3])
        # EAR calculation
        ear = (A + B) / (2.0 * C)
        return ear
    
    def calculate_mar(self, mouth_landmarks):
        """Calculate Mouth Aspect Ratio for yawn detection"""
        # Vertical mouth landmarks
        A = dist.euclidean(mouth_landmarks[2], mouth_landmarks[10])  # 50, 58
        B = dist.euclidean(mouth_landmarks[4], mouth_landmarks[8])   # 52, 56
        # Horizontal mouth landmark
        C = dist.euclidean(mouth_landmarks[0], mouth_landmarks[6])   # 48, 54
        # MAR calculation
        mar = (A + B) / (2.0 * C)
        return mar
    
    def get_head_pose(self, landmarks, img_size):
        """Estimate head pose using facial landmarks"""
        image_points = np.array([
            (landmarks[30][0], landmarks[30][1]),     # Nose tip
            (landmarks[8][0], landmarks[8][1]),       # Chin
            (landmarks[36][0], landmarks[36][1]),     # Left eye left corner
            (landmarks[45][0], landmarks[45][1]),     # Right eye right corner
            (landmarks[48][0], landmarks[48][1]),     # Left Mouth corner
            (landmarks[54][0], landmarks[54][1])      # Right mouth corner
        ], dtype="double")
        
        # Camera internals
        focal_length = img_size[1]
        center = (img_size[1]/2, img_size[0]/2)
        camera_matrix = np.array([
            [focal_length, 0, center[0]],
            [0, focal_length, center[1]],
            [0, 0, 1]], dtype="double")
        
        dist_coeffs = np.zeros((4,1)) # Assuming no lens distortion
        
        # Solve PnP
        (success, rotation_vector, translation_vector) = cv2.solvePnP(
            self.model_points, image_points, camera_matrix, dist_coeffs, 
            flags=cv2.SOLVEPNP_ITERATIVE)
        
        # Convert rotation vector to rotation matrix
        (rotation_matrix, jacobian) = cv2.Rodrigues(rotation_vector)
        
        # Calculate Euler angles
        sy = np.sqrt(rotation_matrix[0,0] * rotation_matrix[0,0] +  rotation_matrix[1,0] * rotation_matrix[1,0])
        singular = sy < 1e-6
        if not singular:
            x = np.arctan2(rotation_matrix[2,1], rotation_matrix[2,2])
            y = np.arctan2(-rotation_matrix[2,0], sy)
            z = np.arctan2(rotation_matrix[1,0], rotation_matrix[0,0])
        else:
            x = np.arctan2(-rotation_matrix[1,2], rotation_matrix[1,1])
            y = np.arctan2(-rotation_matrix[2,0], sy)
            z = 0
        
        # Convert to degrees
        angles = np.array([x, y, z]) * 180.0 / np.pi
        return angles
    
    def generate_voice_alert(self, alert_type, severity="medium"):
        """Generate voice alert using Gemini AI"""
        if not self.model:
            return self.play_default_alert()
        
        try:
            prompts = {
                "drowsy": f"Generate a brief, urgent but caring voice alert (max 15 words) to wake up a drowsy driver. Severity: {severity}. Make it sound natural and concerned.",
                "yawn": f"Generate a brief, gentle voice alert (max 12 words) for a driver who is yawning frequently. Severity: {severity}. Sound caring but alert.",
                "nod": f"Generate a brief, firm voice alert (max 12 words) for a driver whose head is nodding. Severity: {severity}. Sound urgent but supportive."
            }
            
            response = self.model.generate_content(prompts.get(alert_type, prompts["drowsy"]))
            alert_text = response.text.strip().replace('"', '').replace("'", "")
            
            # Use text-to-speech (you would need to install pyttsx3 or use cloud TTS)
            # For this example, we'll use a placeholder
            self.log_status(f"πŸ”Š ALERT: {alert_text}")
            return alert_text
            
        except Exception as e:
            self.log_status(f"Error generating alert: {str(e)}")
            return self.play_default_alert()
    
    def play_default_alert(self):
        """Play default beep alert"""
        try:
            # Generate a simple beep sound
            duration = 0.5  # seconds
            freq = 800  # Hz
            sample_rate = 22050
            frames = int(duration * sample_rate)
            arr = np.zeros(frames)
            
            for i in range(frames):
                arr[i] = np.sin(2 * np.pi * freq * i / sample_rate)
            
            arr = (arr * 32767).astype(np.int16)
            sound = pygame.sndarray.make_sound(arr)
            sound.play()
            
            alert_text = "⚠️ WAKE UP! Please stay alert while driving!"
            self.log_status(f"πŸ”Š {alert_text}")
            return alert_text
            
        except Exception as e:
            self.log_status(f"Error playing alert: {str(e)}")
            return "Alert system activated"
    
    def log_status(self, message):
        """Log status messages with timestamp"""
        timestamp = datetime.now().strftime("%H:%M:%S")
        self.status_log.append(f"[{timestamp}] {message}")
    
    def detect_drowsiness(self, frame):
        """Main drowsiness detection function"""
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = self.detector(gray)
        
        status_text = []
        alert_message = ""
        
        if len(faces) == 0:
            status_text.append("πŸ‘€ No face detected")
            self.log_status("No face detected in frame")
            return frame, status_text, alert_message
        
        for face in faces:
            landmarks = self.predictor(gray, face)
            landmarks = np.array([[p.x, p.y] for p in landmarks.parts()])
            
            # Draw face rectangle
            x, y, w, h = face.left(), face.top(), face.width(), face.height()
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
            
            # Eye Aspect Ratio calculation
            left_eye = landmarks[self.LEFT_EYE]
            right_eye = landmarks[self.RIGHT_EYE]
            
            left_ear = self.calculate_ear(left_eye)
            right_ear = self.calculate_ear(right_eye)
            ear = (left_ear + right_ear) / 2.0
            self.ear_history.append(ear)
            
            # Draw eye contours
            cv2.drawContours(frame, [cv2.convexHull(left_eye)], -1, (0, 255, 0), 1)
            cv2.drawContours(frame, [cv2.convexHull(right_eye)], -1, (0, 255, 0), 1)
            
            # Yawn detection
            mouth = landmarks[self.MOUTH]
            mar = self.calculate_mar(mouth)
            self.yawn_history.append(mar)
            
            # Draw mouth contour
            cv2.drawContours(frame, [cv2.convexHull(mouth)], -1, (0, 255, 255), 1)
            
            # Head pose estimation
            head_angles = self.get_head_pose(landmarks, frame.shape)
            self.head_pose_history.append(head_angles[0])  # Pitch angle
            
            # Drowsiness detection logic
            drowsy_indicators = []
            
            # Check EAR
            if ear < self.EAR_THRESHOLD:
                self.ear_counter += 1
                if self.ear_counter >= self.EAR_CONSECUTIVE_FRAMES:
                    drowsy_indicators.append("EYES_CLOSED")
                    status_text.append(f"πŸ‘οΈ Eyes closed! EAR: {ear:.3f}")
            else:
                self.ear_counter = 0
                status_text.append(f"πŸ‘οΈ Eyes open - EAR: {ear:.3f}")
            
            # Check for yawning
            if mar > self.YAWN_THRESHOLD:
                self.yawn_counter += 1
                if self.yawn_counter >= self.YAWN_CONSECUTIVE_FRAMES:
                    drowsy_indicators.append("YAWNING")
                    status_text.append(f"πŸ₯± Yawning detected! MAR: {mar:.3f}")
            else:
                self.yawn_counter = 0
                status_text.append(f"πŸ‘„ Normal mouth - MAR: {mar:.3f}")
            
            # Check head nodding
            if abs(head_angles[0]) > self.NOD_THRESHOLD:
                self.nod_counter += 1
                if self.nod_counter >= 10:
                    drowsy_indicators.append("HEAD_NOD")
                    status_text.append(f"πŸ“‰ Head nodding! Angle: {head_angles[0]:.1f}Β°")
            else:
                self.nod_counter = 0
                status_text.append(f"πŸ“ Head pose - Pitch: {head_angles[0]:.1f}Β°")
            
            # Generate alerts
            current_time = time.time()
            if drowsy_indicators and (current_time - self.last_alert_time) > self.alert_cooldown:
                self.drowsy_alert = True
                self.last_alert_time = current_time
                
                # Determine alert type and severity
                if "EYES_CLOSED" in drowsy_indicators:
                    severity = "high" if len(drowsy_indicators) > 1 else "medium"
                    alert_message = self.generate_voice_alert("drowsy", severity)
                elif "YAWNING" in drowsy_indicators:
                    alert_message = self.generate_voice_alert("yawn", "medium")
                elif "HEAD_NOD" in drowsy_indicators:
                    alert_message = self.generate_voice_alert("nod", "medium")
                
                # Visual alert on frame
                cv2.putText(frame, "⚠️ DROWSINESS ALERT! ⚠️", (50, 50), 
                           cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 3)
            
            # Draw landmark points
            for (x, y) in landmarks:
                cv2.circle(frame, (x, y), 1, (255, 255, 255), -1)
            
            # Add metrics overlay
            cv2.putText(frame, f"EAR: {ear:.3f}", (10, frame.shape[0] - 80), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
            cv2.putText(frame, f"MAR: {mar:.3f}", (10, frame.shape[0] - 60), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
            cv2.putText(frame, f"Head: {head_angles[0]:.1f}Β°", (10, frame.shape[0] - 40), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
            
        return frame, status_text, alert_message

def create_gradio_interface():
    """Create Gradio interface for the drowsiness detection system"""
    
    # Global detector instance
    detector = None
    
    def initialize_system(gemini_key):
        """Initialize the drowsiness detection system"""
        global detector
        try:
            detector = DrowsinessDetector(gemini_key if gemini_key.strip() else None)
            return "βœ… System initialized successfully!", "System ready for detection."
        except Exception as e:
            return f"❌ Error initializing system: {str(e)}", "System initialization failed."
    
    def process_video_frame(frame, gemini_key):
        """Process a single video frame"""
        global detector
        
        if detector is None:
            detector = DrowsinessDetector(gemini_key if gemini_key.strip() else None)
        
        try:
            processed_frame, status_list, alert_msg = detector.detect_drowsiness(frame)
            
            # Format status text
            status_text = "\n".join(status_list) if status_list else "Processing..."
            
            # Get recent logs
            log_text = "\n".join(list(detector.status_log)[-10:]) if detector.status_log else "No logs yet."
            
            return processed_frame, status_text, alert_msg, log_text
            
        except Exception as e:
            error_msg = f"Error processing frame: {str(e)}"
            return frame, error_msg, "", error_msg
    
    # Create the Gradio interface
    with gr.Blocks(title="Driver Drowsiness Detection System", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸš— Real-time Driver Drowsiness Detection System
        
        This system uses computer vision and AI to detect driver drowsiness through:
        - **Eye Aspect Ratio (EAR)** - Detects closed/droopy eyes
        - **Mouth Aspect Ratio (MAR)** - Detects yawning
        - **Head Pose Estimation** - Detects head nodding
        - **AI Voice Alerts** - Uses Gemini AI for personalized wake-up messages
        
        ### πŸ“‹ Setup Instructions:
        1. Download `shape_predictor_68_face_landmarks.dat` from [dlib models](http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2)
        2. Place it in the same directory as this script
        3. (Optional) Enter your Gemini API key for AI-powered voice alerts
        4. Start your webcam and begin monitoring!
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                # Gemini API key input
                gemini_key_input = os.getenv('GEMINI_API_KEY')
                
                
                # Initialize button
                init_btn = gr.Button("πŸš€ Initialize System", variant="primary")
                init_status = gr.Textbox(label="Initialization Status", interactive=False)
                
            with gr.Column(scale=1):
                # System info
                gr.Markdown("""
                ### πŸ“Š Detection Thresholds:
                - **EAR Threshold**: 0.25
                - **Yawn Threshold**: 0.6  
                - **Head Nod**: 15Β° deviation
                - **Alert Cooldown**: 10 seconds
                """)
        
        with gr.Row():
            with gr.Column(scale=2):
                # Video input/output
                video_input = gr.Video(
                    sources=["webcam"], 
                    label="πŸ“Ή Camera Feed",
                    streaming=True
                )
                
            with gr.Column(scale=1):
                # Status displays
                current_status = gr.Textbox(
                    label="πŸ“ˆ Current Status", 
                    lines=6,
                    interactive=False
                )
                
                alert_display = gr.Textbox(
                    label="πŸ”Š Latest Alert", 
                    interactive=False,
                    placeholder="No alerts yet..."
                )
                
                system_logs = gr.Textbox(
                    label="πŸ“ System Logs", 
                    lines=8,
                    interactive=False,
                    placeholder="System logs will appear here..."
                )
        
        # Event handlers
        init_btn.click(
            fn=initialize_system,
            inputs=[gemini_key_input],
            outputs=[init_status, alert_display]
        )
        
        video_input.stream(
            fn=process_video_frame,
            inputs=[video_input, gemini_key_input],
            outputs=[video_input, current_status, alert_display, system_logs],
            stream_every=0.1,  # Process every 100ms
            show_progress=False
        )
        
        # Instructions
        gr.Markdown("""
        ### πŸ”§ Troubleshooting:
        - **No face detected**: Ensure good lighting and face is visible to camera
        - **Poor detection**: Adjust camera angle and distance (arm's length recommended)
        - **No alerts**: Check if Gemini API key is valid (optional feature)
        - **High CPU usage**: Reduce video resolution or increase stream interval
        
        ### ⚠️ Safety Notice:
        This system is for demonstration purposes. Always prioritize real-world driving safety measures.
        Pull over safely if you feel drowsy while driving.
        """)
    
    return demo

# Main execution
if __name__ == "__main__":
    # Check for required files
    if not os.path.exists('shape_predictor_68_face_landmarks.dat'):
        print("❌ Missing required file: shape_predictor_68_face_landmarks.dat")
        print("πŸ“₯ Please download from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2")
        print("πŸ“ Extract and place in the same directory as this script")
    else:
        print("βœ… All required files found!")
        
        # Create and launch the interface
        demo = create_gradio_interface()
        demo.launch(
            share=True,
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True
        )