Spaces:
Sleeping
Sleeping
# Custom tools for smolagents GAIA agent | |
from __future__ import annotations | |
import contextlib | |
import io | |
import os | |
from typing import Any, Dict, List | |
from smolagents import Tool | |
# ---- 1. PythonRunTool ------------------------------------------------------ | |
class PythonRunTool(Tool): | |
name = "python_run" | |
description = """ | |
Execute trusted Python code and return printed output + repr() of the last expression (or _result variable). | |
""" | |
inputs = { | |
"code": { | |
"type": "string", | |
"description": "Python code to execute", | |
"required": True | |
} | |
} | |
output_type = "string" | |
def forward(self, code: str) -> str: | |
buf, ns = io.StringIO(), {} | |
last = None | |
try: | |
with contextlib.redirect_stdout(buf): | |
exec(compile(code, "<agent-python>", "exec"), {}, ns) | |
last = ns.get("_result", None) | |
except Exception as e: | |
raise RuntimeError(f"PythonRunTool error: {e}") from e | |
out = buf.getvalue() | |
# Always return a string | |
result = (out + (repr(last) if last is not None else "")).strip() | |
return str(result) | |
# ---- 2. ExcelLoaderTool ---------------------------------------------------- | |
class ExcelLoaderTool(Tool): | |
name = "load_spreadsheet" | |
description = """ | |
Read .xlsx/.xls/.csv from disk and return rows as a list of dictionaries with string keys. | |
""" | |
inputs = { | |
"path": { | |
"type": "string", | |
"description": "Path to .csv/.xls/.xlsx file", | |
"required": True | |
}, | |
"sheet": { | |
"type": "string", | |
"description": "Sheet name or index (optional, required for Excel files only)", | |
"required": False, | |
"default": "", | |
"nullable": True | |
} | |
} | |
output_type = "array" | |
def forward(self, path: str, sheet: str | int | None = None) -> str: | |
import pandas as pd | |
if not os.path.isfile(path): | |
raise FileNotFoundError(path) | |
ext = os.path.splitext(path)[1].lower() | |
if sheet == "": | |
sheet = None | |
if ext == ".csv": | |
df = pd.read_csv(path) | |
else: | |
df = pd.read_excel(path, sheet_name=sheet) | |
if isinstance(df, dict): | |
# If user did not specify a sheet, use the first one found | |
first_sheet = next(iter(df)) | |
df = df[first_sheet] | |
records = [{str(k): v for k, v in row.items()} for row in df.to_dict(orient="records")] | |
# Always return a string | |
return str(records) | |
# ---- 3. YouTubeTranscriptTool --------------------------------------------- | |
class YouTubeTranscriptTool(Tool): | |
name = "youtube_transcript" | |
description = """ | |
Return the subtitles of a YouTube URL using youtube-transcript-api. | |
""" | |
inputs = { | |
"url": { | |
"type": "string", | |
"description": "YouTube URL", | |
"required": True | |
}, | |
"lang": { | |
"type": "string", | |
"description": "Transcript language (default: en)", | |
"required": False, | |
"default": "en", | |
"nullable": True | |
} | |
} | |
output_type = "string" | |
def forward(self, url: str, lang: str = "en") -> str: | |
from urllib.parse import urlparse, parse_qs | |
from youtube_transcript_api._api import YouTubeTranscriptApi | |
vid = parse_qs(urlparse(url).query).get("v", [None])[0] or url.split("/")[-1] | |
data = YouTubeTranscriptApi.get_transcript(vid, languages=[lang, "en", "en-US", "en-GB"]) | |
text = " ".join(d["text"] for d in data).strip() | |
return str(text) | |
# ---- 4. AudioTranscriptionTool -------------------------------------------- | |
class AudioTranscriptionTool(Tool): | |
name = "transcribe_audio" | |
description = """ | |
Transcribe an audio file with OpenAI Whisper, returns plain text." | |
""" | |
inputs = { | |
"path": { | |
"type": "string", | |
"description": "Path to audio file", | |
"required": True | |
}, | |
"model": { | |
"type": "string", | |
"description": "Model name for transcription (default: whisper-1)", | |
"required": False, | |
"default": "whisper-1", | |
"nullable": True | |
} | |
} | |
output_type = "string" | |
def forward(self, path: str, model: str = "whisper-1") -> str: | |
import openai | |
if not os.path.isfile(path): | |
raise FileNotFoundError(path) | |
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
with open(path, "rb") as fp: | |
transcript = client.audio.transcriptions.create(model=model, file=fp) | |
return str(transcript.text.strip()) | |
# ---- 5. SimpleOCRTool ------------------------------------------------------ | |
class SimpleOCRTool(Tool): | |
name = "image_ocr" | |
description = """ | |
Return any text spotted in an image via pytesseract OCR. | |
""" | |
inputs = { | |
"path": { | |
"type": "string", | |
"description": "Path to image file", | |
"required": True | |
} | |
} | |
output_type = "string" | |
def forward(self, path: str) -> str: | |
from PIL import Image | |
import pytesseract | |
if not os.path.isfile(path): | |
raise FileNotFoundError(path) | |
return str(pytesseract.image_to_string(Image.open(path)).strip()) | |
# --------------------------------------------------------------------------- | |
__all__ = [ | |
"PythonRunTool", | |
"ExcelLoaderTool", | |
"YouTubeTranscriptTool", | |
"AudioTranscriptionTool", | |
"SimpleOCRTool", | |
] | |