Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files
agent.py
CHANGED
@@ -6,7 +6,9 @@ from __future__ import annotations
|
|
6 |
|
7 |
import asyncio
|
8 |
import os
|
9 |
-
|
|
|
|
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
from agents import Agent, Runner, FunctionTool, Tool
|
@@ -21,6 +23,12 @@ from tools import (
|
|
21 |
duckduckgo_search,
|
22 |
)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# ---------------------------------------------------------------------------
|
25 |
# Load the added system prompt
|
26 |
# ---------------------------------------------------------------------------
|
@@ -82,18 +90,32 @@ class GAIAAgent:
|
|
82 |
|
83 |
def __init__(self, *, extra_tools: Sequence[FunctionTool] | None = None):
|
84 |
self._agent = _build_agent(extra_tools=extra_tools)
|
|
|
|
|
85 |
|
86 |
-
async def _arun(self, question: str) -> str:
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
return str(result.final_output).strip()
|
89 |
|
90 |
-
def __call__(self, question: str, **kwargs: Any) -> str:
|
91 |
try:
|
92 |
loop = asyncio.get_running_loop()
|
93 |
except RuntimeError:
|
94 |
-
return asyncio.run(self._arun(question))
|
95 |
else:
|
96 |
-
return loop.run_until_complete(self._arun(question))
|
97 |
|
98 |
|
99 |
def gaia_agent(*, extra_tools: Sequence[FunctionTool] | None = None) -> GAIAAgent:
|
|
|
6 |
|
7 |
import asyncio
|
8 |
import os
|
9 |
+
import time
|
10 |
+
import datetime
|
11 |
+
from typing import Any, Sequence, Callable, List, Optional
|
12 |
|
13 |
from dotenv import load_dotenv
|
14 |
from agents import Agent, Runner, FunctionTool, Tool
|
|
|
23 |
duckduckgo_search,
|
24 |
)
|
25 |
|
26 |
+
# ---------------------------------------------------------------------------
|
27 |
+
# Logging Utility
|
28 |
+
# ---------------------------------------------------------------------------
|
29 |
+
def log(msg):
|
30 |
+
print(f"[{datetime.datetime.now():%Y-%m-%d %H:%M:%S}] {msg}")
|
31 |
+
|
32 |
# ---------------------------------------------------------------------------
|
33 |
# Load the added system prompt
|
34 |
# ---------------------------------------------------------------------------
|
|
|
90 |
|
91 |
def __init__(self, *, extra_tools: Sequence[FunctionTool] | None = None):
|
92 |
self._agent = _build_agent(extra_tools=extra_tools)
|
93 |
+
# Store the model id for logging
|
94 |
+
self.model_id = _select_model()
|
95 |
|
96 |
+
async def _arun(self, question: str, q_index: Optional[int] = None) -> str:
|
97 |
+
q_num = q_index + 1 if q_index is not None else "?"
|
98 |
+
log(f"Answering question {q_num}:")
|
99 |
+
log(f" Question: {question!r}")
|
100 |
+
log(f" Model: {self.model_id}")
|
101 |
+
|
102 |
+
t0 = time.time()
|
103 |
+
try:
|
104 |
+
result = await Runner.run(self._agent, question)
|
105 |
+
duration = time.time() - t0
|
106 |
+
log(f" Total duration: {duration:.2f} seconds.")
|
107 |
+
except Exception as e:
|
108 |
+
log(f" Error during answer: {e}")
|
109 |
+
raise
|
110 |
return str(result.final_output).strip()
|
111 |
|
112 |
+
def __call__(self, question: str, q_index: Optional[int] = None, **kwargs: Any) -> str:
|
113 |
try:
|
114 |
loop = asyncio.get_running_loop()
|
115 |
except RuntimeError:
|
116 |
+
return asyncio.run(self._arun(question, q_index=q_index))
|
117 |
else:
|
118 |
+
return loop.run_until_complete(self._arun(question, q_index=q_index))
|
119 |
|
120 |
|
121 |
def gaia_agent(*, extra_tools: Sequence[FunctionTool] | None = None) -> GAIAAgent:
|
app.py
CHANGED
@@ -2,30 +2,34 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
# --- Our Agent ---
|
7 |
from agent import gaia_agent
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Debugging level. If DEBUG=0 then DEBUG will be False. If DEBUG=1 then DEBUG will be True.
|
10 |
DEBUG = os.getenv("DEBUG", "0") == "1"
|
11 |
|
12 |
-
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
-
def run_and_submit_all(
|
17 |
"""
|
18 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
19 |
and displays the results.
|
20 |
"""
|
21 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
22 |
-
space_id = os.getenv("SPACE_ID")
|
23 |
|
24 |
if profile:
|
25 |
-
username= f"{profile.username}"
|
26 |
-
|
27 |
else:
|
28 |
-
|
29 |
return "Please Login to Hugging Face with the button.", None
|
30 |
|
31 |
api_url = DEFAULT_API_URL
|
@@ -35,16 +39,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
35 |
# 1. Instantiate Agent (now using OpenAI Agents SDK)
|
36 |
try:
|
37 |
agent = gaia_agent()
|
38 |
-
|
39 |
except Exception as e:
|
40 |
-
|
41 |
return f"Error initializing agent: {e}", None
|
42 |
-
|
43 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
44 |
-
|
45 |
|
46 |
# 2. Fetch Questions
|
47 |
-
|
48 |
import json
|
49 |
|
50 |
try:
|
@@ -52,57 +56,55 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
52 |
response.raise_for_status()
|
53 |
questions_data = response.json()
|
54 |
if not questions_data:
|
55 |
-
|
56 |
return "Fetched questions list is empty or invalid format.", None
|
57 |
-
|
58 |
except json.JSONDecodeError as e:
|
59 |
-
|
60 |
-
|
61 |
return f"Error decoding server response for questions: {e}", None
|
62 |
except requests.exceptions.RequestException as e:
|
63 |
-
|
64 |
return f"Error fetching questions: {e}", None
|
65 |
except Exception as e:
|
66 |
-
|
67 |
return f"An unexpected error occurred fetching questions: {e}", None
|
68 |
|
69 |
# 3. Run the Agent
|
70 |
results_log = []
|
71 |
answers_payload = []
|
72 |
-
|
73 |
-
for item in questions_data:
|
74 |
task_id = item.get("task_id")
|
75 |
question_text = item.get("question")
|
76 |
if not task_id or question_text is None:
|
77 |
-
|
78 |
continue
|
79 |
try:
|
80 |
-
submitted_answer = agent(question_text)
|
81 |
-
# --- DEBUG LOGGING ---
|
82 |
if DEBUG:
|
83 |
-
|
84 |
else:
|
85 |
-
|
86 |
|
87 |
-
# Force string type here just in case (defensive)
|
88 |
submitted_answer = str(submitted_answer).strip()
|
89 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
90 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
91 |
except Exception as e:
|
92 |
-
|
93 |
-
|
94 |
|
95 |
if not answers_payload:
|
96 |
-
|
97 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
98 |
|
99 |
-
# 4. Prepare Submission
|
100 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
101 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
102 |
-
|
103 |
|
104 |
# 5. Submit
|
105 |
-
|
106 |
try:
|
107 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
108 |
response.raise_for_status()
|
@@ -114,7 +116,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
114 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
115 |
f"Message: {result_data.get('message', 'No message received.')}"
|
116 |
)
|
117 |
-
|
118 |
results_df = pd.DataFrame(results_log)
|
119 |
return final_status, results_df
|
120 |
except requests.exceptions.HTTPError as e:
|
@@ -125,22 +127,22 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
125 |
except requests.exceptions.JSONDecodeError:
|
126 |
error_detail += f" Response: {e.response.text[:500]}"
|
127 |
status_message = f"Submission Failed: {error_detail}"
|
128 |
-
|
129 |
results_df = pd.DataFrame(results_log)
|
130 |
return status_message, results_df
|
131 |
except requests.exceptions.Timeout:
|
132 |
status_message = "Submission Failed: The request timed out."
|
133 |
-
|
134 |
results_df = pd.DataFrame(results_log)
|
135 |
return status_message, results_df
|
136 |
except requests.exceptions.RequestException as e:
|
137 |
status_message = f"Submission Failed: Network error - {e}"
|
138 |
-
|
139 |
results_df = pd.DataFrame(results_log)
|
140 |
return status_message, results_df
|
141 |
except Exception as e:
|
142 |
status_message = f"An unexpected error occurred during submission: {e}"
|
143 |
-
|
144 |
results_df = pd.DataFrame(results_log)
|
145 |
return status_message, results_df
|
146 |
|
@@ -178,7 +180,7 @@ with gr.Blocks() as demo:
|
|
178 |
if __name__ == "__main__":
|
179 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
180 |
space_host_startup = os.getenv("SPACE_HOST")
|
181 |
-
space_id_startup = os.getenv("SPACE_ID")
|
182 |
|
183 |
if space_host_startup:
|
184 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -186,14 +188,14 @@ if __name__ == "__main__":
|
|
186 |
else:
|
187 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
188 |
|
189 |
-
if space_id_startup:
|
190 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
191 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
192 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
193 |
else:
|
194 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
195 |
|
196 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
197 |
|
198 |
print("Launching Gradio Interface for Agent Evaluation…")
|
199 |
demo.launch(debug=True, share=False)
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import datetime
|
6 |
|
7 |
# --- Our Agent ---
|
8 |
from agent import gaia_agent
|
9 |
|
10 |
+
# Logging utility
|
11 |
+
def log(msg):
|
12 |
+
print(f"[{datetime.datetime.now():%Y-%m-%d %H:%M:%S}] {msg}")
|
13 |
+
|
14 |
# Debugging level. If DEBUG=0 then DEBUG will be False. If DEBUG=1 then DEBUG will be True.
|
15 |
DEBUG = os.getenv("DEBUG", "0") == "1"
|
16 |
|
|
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
20 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
21 |
"""
|
22 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
23 |
and displays the results.
|
24 |
"""
|
25 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
26 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
27 |
|
28 |
if profile:
|
29 |
+
username = f"{profile.username}"
|
30 |
+
log(f"User logged in: {username}")
|
31 |
else:
|
32 |
+
log("User not logged in.")
|
33 |
return "Please Login to Hugging Face with the button.", None
|
34 |
|
35 |
api_url = DEFAULT_API_URL
|
|
|
39 |
# 1. Instantiate Agent (now using OpenAI Agents SDK)
|
40 |
try:
|
41 |
agent = gaia_agent()
|
42 |
+
log("OpenAI Agent instantiated successfully.")
|
43 |
except Exception as e:
|
44 |
+
log(f"Error instantiating agent: {e}")
|
45 |
return f"Error initializing agent: {e}", None
|
46 |
+
|
47 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
48 |
+
log(agent_code)
|
49 |
|
50 |
# 2. Fetch Questions
|
51 |
+
log(f"Fetching questions from: {questions_url}")
|
52 |
import json
|
53 |
|
54 |
try:
|
|
|
56 |
response.raise_for_status()
|
57 |
questions_data = response.json()
|
58 |
if not questions_data:
|
59 |
+
log("Fetched questions list is empty.")
|
60 |
return "Fetched questions list is empty or invalid format.", None
|
61 |
+
log(f"Fetched {len(questions_data)} GAIA questions.")
|
62 |
except json.JSONDecodeError as e:
|
63 |
+
log(f"Error decoding JSON response from questions endpoint: {e}")
|
64 |
+
log(f"Response text: {response.text[:500]}")
|
65 |
return f"Error decoding server response for questions: {e}", None
|
66 |
except requests.exceptions.RequestException as e:
|
67 |
+
log(f"Error fetching questions: {e}")
|
68 |
return f"Error fetching questions: {e}", None
|
69 |
except Exception as e:
|
70 |
+
log(f"An unexpected error occurred fetching questions: {e}")
|
71 |
return f"An unexpected error occurred fetching questions: {e}", None
|
72 |
|
73 |
# 3. Run the Agent
|
74 |
results_log = []
|
75 |
answers_payload = []
|
76 |
+
log(f"Running agent on {len(questions_data)} questions...")
|
77 |
+
for idx, item in enumerate(questions_data):
|
78 |
task_id = item.get("task_id")
|
79 |
question_text = item.get("question")
|
80 |
if not task_id or question_text is None:
|
81 |
+
log(f"Skipping item with missing task_id or question: {item}")
|
82 |
continue
|
83 |
try:
|
84 |
+
submitted_answer = agent(question_text, q_index=idx)
|
|
|
85 |
if DEBUG:
|
86 |
+
log(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
87 |
else:
|
88 |
+
log(f"[{task_id}] {question_text[:50]}... → {submitted_answer[:40]}")
|
89 |
|
|
|
90 |
submitted_answer = str(submitted_answer).strip()
|
91 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
92 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
93 |
except Exception as e:
|
94 |
+
log(f"Error running agent on task {task_id}: {e}")
|
95 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
96 |
|
97 |
if not answers_payload:
|
98 |
+
log("Agent did not produce any answers to submit.")
|
99 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
100 |
|
101 |
+
# 4. Prepare Submission
|
102 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
103 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
104 |
+
log(status_update)
|
105 |
|
106 |
# 5. Submit
|
107 |
+
log(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
108 |
try:
|
109 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
110 |
response.raise_for_status()
|
|
|
116 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
117 |
f"Message: {result_data.get('message', 'No message received.')}"
|
118 |
)
|
119 |
+
log("Submission successful.")
|
120 |
results_df = pd.DataFrame(results_log)
|
121 |
return final_status, results_df
|
122 |
except requests.exceptions.HTTPError as e:
|
|
|
127 |
except requests.exceptions.JSONDecodeError:
|
128 |
error_detail += f" Response: {e.response.text[:500]}"
|
129 |
status_message = f"Submission Failed: {error_detail}"
|
130 |
+
log(status_message)
|
131 |
results_df = pd.DataFrame(results_log)
|
132 |
return status_message, results_df
|
133 |
except requests.exceptions.Timeout:
|
134 |
status_message = "Submission Failed: The request timed out."
|
135 |
+
log(status_message)
|
136 |
results_df = pd.DataFrame(results_log)
|
137 |
return status_message, results_df
|
138 |
except requests.exceptions.RequestException as e:
|
139 |
status_message = f"Submission Failed: Network error - {e}"
|
140 |
+
log(status_message)
|
141 |
results_df = pd.DataFrame(results_log)
|
142 |
return status_message, results_df
|
143 |
except Exception as e:
|
144 |
status_message = f"An unexpected error occurred during submission: {e}"
|
145 |
+
log(status_message)
|
146 |
results_df = pd.DataFrame(results_log)
|
147 |
return status_message, results_df
|
148 |
|
|
|
180 |
if __name__ == "__main__":
|
181 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
182 |
space_host_startup = os.getenv("SPACE_HOST")
|
183 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
184 |
|
185 |
if space_host_startup:
|
186 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
188 |
else:
|
189 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
190 |
|
191 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
192 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
193 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
194 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
195 |
else:
|
196 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
197 |
|
198 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
199 |
|
200 |
print("Launching Gradio Interface for Agent Evaluation…")
|
201 |
demo.launch(debug=True, share=False)
|
tools.py
CHANGED
@@ -7,12 +7,31 @@ from __future__ import annotations
|
|
7 |
import contextlib
|
8 |
import io
|
9 |
import os
|
|
|
|
|
10 |
from typing import List, Dict
|
11 |
|
12 |
from agents import function_tool
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# 1. --------------------------------------------------------------------
|
15 |
@function_tool
|
|
|
16 |
def python_run(code: str) -> str:
|
17 |
"""Execute trusted Python code and return the captured stdout together with
|
18 |
the repr() of the last expression (or `_result` variable if set).
|
@@ -36,6 +55,7 @@ def python_run(code: str) -> str:
|
|
36 |
|
37 |
# 2. --------------------------------------------------------------------
|
38 |
@function_tool
|
|
|
39 |
def load_spreadsheet(path: str, sheet: str | int | None = None) -> list[Dict[str, str]]:
|
40 |
"""Read .csv, .xls or .xlsx from disk and return rows as list of dictionaries.
|
41 |
|
@@ -65,6 +85,7 @@ def load_spreadsheet(path: str, sheet: str | int | None = None) -> list[Dict[str
|
|
65 |
|
66 |
# 3. --------------------------------------------------------------------
|
67 |
@function_tool
|
|
|
68 |
def youtube_transcript(url: str, lang: str = "en") -> str:
|
69 |
"""Fetch the subtitles of a YouTube video.
|
70 |
|
@@ -84,6 +105,7 @@ def youtube_transcript(url: str, lang: str = "en") -> str:
|
|
84 |
|
85 |
# 4. --------------------------------------------------------------------
|
86 |
@function_tool
|
|
|
87 |
def transcribe_audio(path: str, model: str = "whisper-1") -> str:
|
88 |
"""Transcribe an audio file using OpenAI Whisper.
|
89 |
|
@@ -104,6 +126,7 @@ def transcribe_audio(path: str, model: str = "whisper-1") -> str:
|
|
104 |
|
105 |
# 5. --------------------------------------------------------------------
|
106 |
@function_tool
|
|
|
107 |
def image_ocr(path: str) -> str:
|
108 |
"""Perform OCR on an image using Tesseract.
|
109 |
|
@@ -120,6 +143,7 @@ def image_ocr(path: str) -> str:
|
|
120 |
|
121 |
# 6. --------------------------------------------------------------------
|
122 |
@function_tool
|
|
|
123 |
def duckduckgo_search(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
124 |
"""Search DuckDuckGo and return a list of result dicts with title, href and body.
|
125 |
|
@@ -139,4 +163,4 @@ def duckduckgo_search(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
|
139 |
"body": r.get("body", ""),
|
140 |
}
|
141 |
)
|
142 |
-
return results
|
|
|
7 |
import contextlib
|
8 |
import io
|
9 |
import os
|
10 |
+
import time
|
11 |
+
import datetime
|
12 |
from typing import List, Dict
|
13 |
|
14 |
from agents import function_tool
|
15 |
|
16 |
+
def log(msg):
|
17 |
+
print(f"[{datetime.datetime.now():%Y-%m-%d %H:%M:%S}] {msg}")
|
18 |
+
|
19 |
+
def log_tool_call(func):
|
20 |
+
def wrapper(*args, **kwargs):
|
21 |
+
t0 = time.time()
|
22 |
+
log(f"Step: {func.__name__} started.")
|
23 |
+
try:
|
24 |
+
result = func(*args, **kwargs)
|
25 |
+
log(f"Step: {func.__name__} completed in {time.time() - t0:.2f}s.")
|
26 |
+
return result
|
27 |
+
except Exception as e:
|
28 |
+
log(f"Step: {func.__name__} error: {e}")
|
29 |
+
raise
|
30 |
+
return wrapper
|
31 |
+
|
32 |
# 1. --------------------------------------------------------------------
|
33 |
@function_tool
|
34 |
+
@log_tool_call
|
35 |
def python_run(code: str) -> str:
|
36 |
"""Execute trusted Python code and return the captured stdout together with
|
37 |
the repr() of the last expression (or `_result` variable if set).
|
|
|
55 |
|
56 |
# 2. --------------------------------------------------------------------
|
57 |
@function_tool
|
58 |
+
@log_tool_call
|
59 |
def load_spreadsheet(path: str, sheet: str | int | None = None) -> list[Dict[str, str]]:
|
60 |
"""Read .csv, .xls or .xlsx from disk and return rows as list of dictionaries.
|
61 |
|
|
|
85 |
|
86 |
# 3. --------------------------------------------------------------------
|
87 |
@function_tool
|
88 |
+
@log_tool_call
|
89 |
def youtube_transcript(url: str, lang: str = "en") -> str:
|
90 |
"""Fetch the subtitles of a YouTube video.
|
91 |
|
|
|
105 |
|
106 |
# 4. --------------------------------------------------------------------
|
107 |
@function_tool
|
108 |
+
@log_tool_call
|
109 |
def transcribe_audio(path: str, model: str = "whisper-1") -> str:
|
110 |
"""Transcribe an audio file using OpenAI Whisper.
|
111 |
|
|
|
126 |
|
127 |
# 5. --------------------------------------------------------------------
|
128 |
@function_tool
|
129 |
+
@log_tool_call
|
130 |
def image_ocr(path: str) -> str:
|
131 |
"""Perform OCR on an image using Tesseract.
|
132 |
|
|
|
143 |
|
144 |
# 6. --------------------------------------------------------------------
|
145 |
@function_tool
|
146 |
+
@log_tool_call
|
147 |
def duckduckgo_search(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
148 |
"""Search DuckDuckGo and return a list of result dicts with title, href and body.
|
149 |
|
|
|
163 |
"body": r.get("body", ""),
|
164 |
}
|
165 |
)
|
166 |
+
return results
|