Commit
·
76ba794
1
Parent(s):
d16240b
authentication
Browse files
app.py
CHANGED
@@ -1,16 +1,8 @@
|
|
1 |
-
from typing import Dict, Union
|
2 |
-
from huggingface_hub import get_safetensors_metadata, hf_hub_download
|
3 |
-
import argparse
|
4 |
-
import sys
|
5 |
-
import json
|
6 |
import gradio as gr
|
7 |
from typing import Dict, Union
|
8 |
-
from huggingface_hub import get_safetensors_metadata, hf_hub_download
|
9 |
import json
|
10 |
|
11 |
-
# Example:
|
12 |
-
# python get_gpu_memory.py Qwen/Qwen2.5-7B-Instruct
|
13 |
-
|
14 |
# Dictionary mapping dtype strings to their byte sizes
|
15 |
bytes_per_dtype: Dict[str, float] = {
|
16 |
"int4": 0.5,
|
@@ -20,57 +12,8 @@ bytes_per_dtype: Dict[str, float] = {
|
|
20 |
"float32": 4,
|
21 |
}
|
22 |
|
23 |
-
|
24 |
-
def calculate_kv_cache_memory(context_size: int, model_id: str, dtype: str, filename: str="config.json"):
|
25 |
-
"""
|
26 |
-
Implements the formula suggested in https://medium.com/@tejaswi_kashyap/memory-optimization-in-llms-leveraging-kv-cache-quantization-for-efficient-inference-94bc3df5faef
|
27 |
-
"""
|
28 |
-
try:
|
29 |
-
file_path = hf_hub_download(repo_id=model_id, filename=filename)
|
30 |
-
|
31 |
-
with open(file_path, 'r') as f:
|
32 |
-
config = json.load(f)
|
33 |
-
|
34 |
-
keys_to_find = {"num_hidden_layers", "num_key_value_heads", "hidden_size", "num_attention_heads"}
|
35 |
-
|
36 |
-
config = extract_keys(config, keys_to_find)
|
37 |
-
|
38 |
-
num_layers = config["num_hidden_layers"]
|
39 |
-
|
40 |
-
if "num_key_value_heads" in config:
|
41 |
-
num_att_heads = config["num_key_value_heads"]
|
42 |
-
else:
|
43 |
-
num_att_heads = config["num_attention_heads"]
|
44 |
-
|
45 |
-
dim_att_head = config["hidden_size"] // config["num_attention_heads"]
|
46 |
-
|
47 |
-
dtype_bytes = bytes_per_dtype[dtype]
|
48 |
-
|
49 |
-
memory_per_token = num_layers * num_att_heads * dim_att_head * dtype_bytes * 2
|
50 |
-
|
51 |
-
context_size_memory_footprint_gb = (context_size * memory_per_token) / 1_000_000_000
|
52 |
-
|
53 |
-
return context_size_memory_footprint_gb
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
print(f"Error estimating context size: {str(e)}", file=sys.stderr)
|
57 |
-
return None
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
def extract_keys(json_obj, keys_to_extract):
|
62 |
-
"""
|
63 |
-
Recursively searches for specific keys in a nested JSON object.
|
64 |
-
|
65 |
-
Args:
|
66 |
-
json_obj (dict or list): The JSON data (parsed as a dictionary or list).
|
67 |
-
keys_to_extract (set): A set of keys to extract values for.
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
dict: A dictionary with found key-value pairs.
|
71 |
-
"""
|
72 |
extracted_values = {}
|
73 |
-
|
74 |
def recursive_search(obj):
|
75 |
if isinstance(obj, dict):
|
76 |
for key, value in obj.items():
|
@@ -80,71 +23,53 @@ def extract_keys(json_obj, keys_to_extract):
|
|
80 |
elif isinstance(obj, list):
|
81 |
for item in obj:
|
82 |
recursive_search(item)
|
83 |
-
|
84 |
recursive_search(json_obj)
|
85 |
return extracted_values
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
Args:
|
100 |
-
parameters: Number of model parameters in billions
|
101 |
-
bytes: Number of bytes per parameter based on dtype
|
102 |
-
Returns:
|
103 |
-
Estimated GPU memory required in Gigabytes
|
104 |
-
Examples:
|
105 |
-
>>> calculate_gpu_memory(7, bytes_per_dtype["float16"])
|
106 |
-
13.72
|
107 |
-
>>> calculate_gpu_memory(13, bytes_per_dtype["int8"])
|
108 |
-
12.74
|
109 |
-
"""
|
110 |
-
memory = round((parameters * 4) / (32 / (bytes * 8)) * 1.18, 2)
|
111 |
-
return memory
|
112 |
|
|
|
|
|
|
|
113 |
|
114 |
-
def get_model_size(model_id: str, dtype: str =
|
115 |
-
"""Get the estimated GPU memory requirement for a Hugging Face model.
|
116 |
-
Args:
|
117 |
-
model_id: Hugging Face model ID (e.g., "facebook/opt-350m")
|
118 |
-
dtype: Data type for model loading ("float16", "int8", etc.)
|
119 |
-
Returns:
|
120 |
-
Estimated GPU memory in GB, or None if estimation fails
|
121 |
-
Examples:
|
122 |
-
>>> get_model_size("facebook/opt-350m")
|
123 |
-
0.82
|
124 |
-
>>> get_model_size("meta-llama/Llama-2-7b-hf", dtype="int8")
|
125 |
-
6.86
|
126 |
-
"""
|
127 |
try:
|
128 |
-
|
129 |
-
metadata = get_safetensors_metadata(model_id)
|
130 |
if not metadata or not metadata.parameter_count:
|
131 |
-
|
132 |
-
|
133 |
-
model_parameters
|
134 |
-
model_parameters = int(model_parameters) / 1_000_000_000 # Convert to billions
|
135 |
-
return calculate_model_memory(model_parameters, bytes_per_dtype[dtype])
|
136 |
-
|
137 |
except Exception as e:
|
138 |
-
|
139 |
-
return None
|
140 |
-
|
141 |
|
142 |
-
def estimate_vram(model_id, dtype, context_size):
|
|
|
|
|
|
|
143 |
if dtype not in bytes_per_dtype:
|
144 |
return "Error: Unsupported dtype"
|
145 |
|
146 |
-
model_memory = get_model_size(model_id, dtype)
|
147 |
-
context_memory = calculate_kv_cache_memory(context_size, model_id, dtype)
|
148 |
|
149 |
if isinstance(model_memory, str) or isinstance(context_memory, str):
|
150 |
return model_memory if isinstance(model_memory, str) else context_memory
|
@@ -157,11 +82,12 @@ iface = gr.Interface(
|
|
157 |
inputs=[
|
158 |
gr.Textbox(label="Hugging Face Model ID", value="google/gemma-3-27b-it"),
|
159 |
gr.Dropdown(choices=list(bytes_per_dtype.keys()), label="Data Type", value="float16"),
|
160 |
-
gr.Number(label="Context Size", value=128000)
|
|
|
161 |
],
|
162 |
outputs=gr.Textbox(label="Estimated VRAM Usage"),
|
163 |
title="LLM GPU VRAM Calculator",
|
164 |
-
description="Estimate the VRAM requirements of a model and context size."
|
165 |
)
|
166 |
|
167 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from typing import Dict, Union
|
3 |
+
from huggingface_hub import get_safetensors_metadata, hf_hub_download, login
|
4 |
import json
|
5 |
|
|
|
|
|
|
|
6 |
# Dictionary mapping dtype strings to their byte sizes
|
7 |
bytes_per_dtype: Dict[str, float] = {
|
8 |
"int4": 0.5,
|
|
|
12 |
"float32": 4,
|
13 |
}
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def extract_keys(json_obj, keys_to_extract):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
extracted_values = {}
|
|
|
17 |
def recursive_search(obj):
|
18 |
if isinstance(obj, dict):
|
19 |
for key, value in obj.items():
|
|
|
23 |
elif isinstance(obj, list):
|
24 |
for item in obj:
|
25 |
recursive_search(item)
|
|
|
26 |
recursive_search(json_obj)
|
27 |
return extracted_values
|
28 |
|
29 |
+
def calculate_kv_cache_memory(context_size: int, model_id: str, dtype: str, token: str = None):
|
30 |
+
try:
|
31 |
+
file_path = hf_hub_download(repo_id=model_id, filename="config.json", token=token)
|
32 |
+
with open(file_path, 'r') as f:
|
33 |
+
config = json.load(f)
|
34 |
+
|
35 |
+
keys_to_find = {"num_hidden_layers", "num_key_value_heads", "hidden_size", "num_attention_heads"}
|
36 |
+
config = extract_keys(config, keys_to_find)
|
37 |
|
38 |
+
num_layers = config["num_hidden_layers"]
|
39 |
+
num_att_heads = config.get("num_key_value_heads", config["num_attention_heads"])
|
40 |
+
dim_att_head = config["hidden_size"] // config["num_attention_heads"]
|
41 |
+
dtype_bytes = bytes_per_dtype[dtype]
|
42 |
+
|
43 |
+
memory_per_token = num_layers * num_att_heads * dim_att_head * dtype_bytes * 2
|
44 |
+
context_size_memory_footprint_gb = (context_size * memory_per_token) / 1_000_000_000
|
45 |
+
|
46 |
+
return context_size_memory_footprint_gb
|
47 |
+
except Exception as e:
|
48 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
def calculate_model_memory(parameters: float, dtype: str) -> float:
|
51 |
+
bytes = bytes_per_dtype[dtype]
|
52 |
+
return round((parameters * 4) / (32 / (bytes * 8)) * 1.18, 2)
|
53 |
|
54 |
+
def get_model_size(model_id: str, dtype: str, token: str = None) -> Union[float, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
try:
|
56 |
+
metadata = get_safetensors_metadata(model_id, token=token)
|
|
|
57 |
if not metadata or not metadata.parameter_count:
|
58 |
+
return "Error: Could not fetch metadata."
|
59 |
+
model_parameters = int(list(metadata.parameter_count.values())[0]) / 1_000_000_000
|
60 |
+
return calculate_model_memory(model_parameters, dtype)
|
|
|
|
|
|
|
61 |
except Exception as e:
|
62 |
+
return f"Error: {str(e)}"
|
|
|
|
|
63 |
|
64 |
+
def estimate_vram(model_id, dtype, context_size, hf_token):
|
65 |
+
if hf_token:
|
66 |
+
login(token=hf_token)
|
67 |
+
|
68 |
if dtype not in bytes_per_dtype:
|
69 |
return "Error: Unsupported dtype"
|
70 |
|
71 |
+
model_memory = get_model_size(model_id, dtype, hf_token)
|
72 |
+
context_memory = calculate_kv_cache_memory(context_size, model_id, dtype, hf_token)
|
73 |
|
74 |
if isinstance(model_memory, str) or isinstance(context_memory, str):
|
75 |
return model_memory if isinstance(model_memory, str) else context_memory
|
|
|
82 |
inputs=[
|
83 |
gr.Textbox(label="Hugging Face Model ID", value="google/gemma-3-27b-it"),
|
84 |
gr.Dropdown(choices=list(bytes_per_dtype.keys()), label="Data Type", value="float16"),
|
85 |
+
gr.Number(label="Context Size", value=128000),
|
86 |
+
gr.Textbox(label="Hugging Face Access Token", type="password", placeholder="Optional - Needed for gated models")
|
87 |
],
|
88 |
outputs=gr.Textbox(label="Estimated VRAM Usage"),
|
89 |
title="LLM GPU VRAM Calculator",
|
90 |
+
description="Estimate the VRAM requirements of a model and context size. Optionally provide a Hugging Face token for gated models."
|
91 |
)
|
92 |
|
93 |
+
iface.launch()
|