Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,801 Bytes
5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 79e128e 5a10d46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
#!/usr/bin/env python3
"""
Cosmos-Predict2 for Hugging Face Spaces ZeroGPU
Optimized for H200 with 70GB VRAM - much simpler than RTX 5080 version!
"""
import os
import gradio as gr
import torch
import spaces
from diffusers import DiffusionPipeline
import gc
from typing import Optional
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
class CosmosZeroGPUApp:
def __init__(self):
self.pipe = None
self.model_loaded = False
print("๐ Cosmos-Predict2 ZeroGPU App Starting...")
def get_memory_info(self):
"""Get current memory usage - simplified for ZeroGPU"""
if torch.cuda.is_available():
vram_used = torch.cuda.memory_allocated(0) / 1024**3
return f"GPU Memory Used: {vram_used:.1f}GB (H200 - 70GB Available)"
else:
return "GPU: Not allocated (ZeroGPU will assign when needed)"
@spaces.GPU(duration=300) # 5 minutes for model loading
def load_model(self, progress=gr.Progress()):
"""Load model with ZeroGPU"""
if self.model_loaded:
return "โ
Model already loaded!", self.get_memory_info()
try:
progress(0.1, desc="๐ Initializing ZeroGPU...")
# ZeroGPU automatically handles device allocation
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"๐ฎ Using device: {device}")
progress(0.3, desc="๐ฅ Loading Cosmos-Predict2 model...")
model_id = "nvidia/Cosmos-Predict2-2B-Text2Image"
# Load model - much simpler with 70GB VRAM!
self.pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Use bfloat16 for better performance
device_map="auto",
use_safetensors=True,
trust_remote_code=True
)
progress(0.7, desc="โก Optimizing for H200...")
# Move to GPU
if torch.cuda.is_available():
self.pipe = self.pipe.to(device)
# Enable optimizations (optional with 70GB VRAM, but still good for speed)
try:
self.pipe.enable_attention_slicing()
print("โ
Attention slicing enabled")
except:
pass
try:
self.pipe.enable_xformers_memory_efficient_attention()
print("โ
xformers enabled")
except:
print("๐ xformers not available (optional)")
# Compile model for faster inference (optional)
try:
if hasattr(self.pipe, 'unet'):
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
print("โ
Model compiled for faster inference")
except:
print("๐ Model compilation not available (optional)")
progress(0.9, desc="๐ Finalizing...")
self.model_loaded = True
torch.cuda.empty_cache()
progress(1.0, desc="โ
Ready!")
return "โ
Model loaded successfully on ZeroGPU H200!", self.get_memory_info()
except Exception as e:
self.model_loaded = False
error_msg = str(e)
if "401" in error_msg or "restricted" in error_msg:
return "โ Access denied. Please ensure the model is publicly accessible.", self.get_memory_info()
return f"โ Error loading model: {error_msg}", self.get_memory_info()
def unload_model(self):
"""Unload model"""
if self.pipe is not None:
del self.pipe
self.pipe = None
self.model_loaded = False
torch.cuda.empty_cache()
gc.collect()
return "โ
Model unloaded!", self.get_memory_info()
@spaces.GPU(duration=120) # 2 minutes for generation
def generate_image(self, prompt, negative_prompt="", num_steps=25, guidance_scale=7.5,
seed=-1, width=1024, height=1024, progress=gr.Progress()):
"""Generate image with ZeroGPU H200"""
if not self.model_loaded or self.pipe is None:
return None, "โ Please load the model first!", self.get_memory_info()
try:
progress(0.1, desc="๐จ Preparing generation...")
# With 70GB VRAM, we can use much larger resolutions!
max_pixels = 2048 * 2048 # 4MP max for reasonable generation times
current_pixels = width * height
if current_pixels > max_pixels:
# Scale down proportionally
scale = (max_pixels / current_pixels) ** 0.5
width = int(width * scale)
height = int(height * scale)
# Round to nearest 64 for compatibility
width = (width // 64) * 64
height = (height // 64) * 64
size_msg = f"๐ Scaled to {width}x{height} for optimal performance"
else:
size_msg = f"๐ Generating at {width}x{height}"
# Set seed for reproducibility
generator = None
if seed != -1:
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0.3, desc=f"๐จ Generating {width}x{height} image...")
print(f"๐จ Generating: {width}x{height}, {num_steps} steps, guidance: {guidance_scale}")
# Generate with the powerful H200!
with torch.inference_mode():
result = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
output_type="pil"
)
progress(0.9, desc="๐ Finalizing...")
# Extract image
if hasattr(result, 'images'):
image = result.images[0]
elif isinstance(result, list):
image = result[0]
else:
image = result
# Cleanup
del result
torch.cuda.empty_cache()
progress(1.0, desc="โ
Complete!")
return image, f"โ
Generated successfully! {size_msg}", self.get_memory_info()
except Exception as e:
torch.cuda.empty_cache()
return None, f"โ Generation failed: {str(e)}", self.get_memory_info()
# Initialize app
app = CosmosZeroGPUApp()
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Cosmos-Predict2 ZeroGPU", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# ๐ Cosmos-Predict2 on ZeroGPU
**Powered by NVIDIA H200 with 70GB VRAM โข High-resolution generation โข Fast inference**
This Space uses ZeroGPU for efficient GPU allocation. The GPU is assigned when you load the model or generate images.
""")
# Memory status
memory_display = gr.Textbox(
label="๐ GPU Status",
value=app.get_memory_info(),
interactive=False
)
with gr.Row():
with gr.Column():
# Model management
gr.Markdown("### ๐ฎ Model Management")
with gr.Row():
load_btn = gr.Button("๐ Load Model", variant="primary", size="lg")
unload_btn = gr.Button("๐๏ธ Unload", variant="secondary")
model_status = gr.Textbox(label="Model Status", interactive=False)
# Generation settings
gr.Markdown("### ๐จ Generation Settings")
prompt = gr.Textbox(
label="Prompt",
placeholder="A futuristic robot in a high-tech laboratory with holographic displays...",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="blurry, low quality, distorted, ugly, deformed...",
lines=2
)
with gr.Row():
steps = gr.Slider(10, 50, value=25, step=5, label="Inference Steps")
guidance = gr.Slider(1, 15, value=7.5, step=0.5, label="Guidance Scale")
with gr.Row():
width = gr.Slider(512, 2048, value=1024, step=64, label="Width")
height = gr.Slider(512, 2048, value=1024, step=64, label="Height")
seed = gr.Number(label="Seed (-1 = random)", value=-1, precision=0)
generate_btn = gr.Button("๐จ Generate Image", variant="primary", size="lg")
with gr.Column():
# Output
output_image = gr.Image(label="Generated Image", height=600)
generation_status = gr.Textbox(label="Generation Status", interactive=False)
# ZeroGPU info
gr.Markdown("""
### ๐ก ZeroGPU Features:
- **70GB VRAM**: Generate high-resolution images up to 2048x2048
- **Dynamic allocation**: GPU assigned only when needed
- **H200 powered**: Latest NVIDIA architecture for fast inference
- **Free to use**: Available to all users (PRO users get higher priority)
- **Auto-optimization**: Model compilation and memory efficiency
""")
# Event handlers
load_btn.click(
app.load_model,
outputs=[model_status, memory_display]
)
unload_btn.click(
app.unload_model,
outputs=[model_status, memory_display]
)
generate_btn.click(
app.generate_image,
inputs=[prompt, negative_prompt, steps, guidance, seed, width, height],
outputs=[output_image, generation_status, memory_display]
)
# Auto-refresh memory status
def refresh_memory():
return app.get_memory_info()
# Update memory display every 10 seconds
gr.Timer(value=10).tick(refresh_memory, outputs=[memory_display])
# Examples optimized for high-resolution
gr.Examples(
examples=[
["A detailed cyberpunk cityscape at night with neon signs, flying cars, and holographic advertisements, highly detailed, 8k resolution"],
["A majestic dragon soaring through storm clouds with lightning, fantasy art, dramatic lighting, ultra detailed"],
["A futuristic space station orbiting Earth, with solar panels and docking bays, sci-fi concept art, cinematic"],
["A serene Japanese garden with cherry blossoms, koi pond, and traditional architecture, peaceful atmosphere, masterpiece"],
["A steampunk mechanical owl with brass gears and copper pipes, intricate details, vintage engineering"],
["An underwater city with bioluminescent coral and glass domes, marine life swimming around, fantasy architecture"]
],
inputs=[prompt],
label="๐จ Example Prompts (optimized for high-resolution generation)"
)
# Usage tips
gr.Markdown("""
### ๐ Usage Tips:
1. **First time**: Click "Load Model" to download and initialize Cosmos-Predict2
2. **High-res**: Try resolutions up to 2048x2048 with the powerful H200 GPU
3. **Quality**: Use 25-30 steps for high quality, 15-20 for faster generation
4. **Prompts**: Be descriptive and specific for best results
5. **Negative prompts**: Help avoid unwanted elements in your images
""")
return interface
if __name__ == "__main__":
print("๐ Starting Cosmos-Predict2 ZeroGPU Space...")
interface = create_interface()
interface.launch()
|