MapMySections / app.py
TibbtechUser's picture
Upload app.py
4885a49 verified
import gradio as gr
import nibabel as nib
import numpy as np
import os
from PIL import Image
import pandas as pd
import nrrd
import ants
from natsort import natsorted
from scipy.ndimage import zoom, rotate
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from sklearn.metrics.pairwise import cosine_similarity
from skimage.transform import resize
import cv2
def square_padd(original_data, square_size=(120,152, 184), order = 1):
# e.g. square_size = 256 by default
# takes a raw image as input
# returns a square (padded) image as output
# order = [int(x-1) for x in ss.rankdata(original_data.shape)]
# # print(order)
# data = original_data.transpose(order)
data= original_data
# print(original_data.shape)
# print(data.shape)
if data.shape[1]>data.shape[0] and data.shape[1]>data.shape[2]: # width>height
scale_percent = (square_size[1]/data.shape[1])*100
# print("dim1")
elif data.shape[2]>data.shape[0] and data.shape[2]>data.shape[1]: # width>height
scale_percent = (square_size[2]/data.shape[2])*100
# print("dim2")
else: # width<height
scale_percent = (square_size[0]/data.shape[0])*100
scale_percent = int(scale_percent)
# print(scale_percent)
width = int(data.shape[0] * scale_percent / 100); height = int(data.shape[1] * scale_percent / 100); depth = int(data.shape[2] * scale_percent / 100);
dim = (width, height, depth)
# print(dim)
zoomFactors = [square_size_axis/float(data_shape) for data_shape, square_size_axis in zip(data.shape, square_size)]
sect_mask = zoom(data,zoom = zoomFactors, order = order, )
# sect_mask = zoom(data,(scale_percent/100, scale_percent/100, scale_percent/100), order = order, )
# sect_mask = cv2.resize(data, dim, interpolation = cv2.INTER_AREA)
sect_padd = (np.ones(square_size))*data[0,0,0]
sect_padd[int((square_size[0]-np.shape(sect_mask)[0])/2):int((square_size[0]-np.shape(sect_mask)[0])/2)+np.shape(sect_mask)[0],
int((square_size[1]-np.shape(sect_mask)[1])/2):int((square_size[1]-np.shape(sect_mask)[1])/2)+np.shape(sect_mask)[1],
int((square_size[2]-np.shape(sect_mask)[2])/2):int((square_size[2]-np.shape(sect_mask)[2])/2)+np.shape(sect_mask)[2]] = sect_mask
return sect_padd
def square_padding_RGB(single_RGB,square_size=256):
# e.g. square_size = 256 by default
# takes a raw image as input
# returns a square (padded) image as output
# input: 2D image
# output: 2D resized padded image
# example: BNI images, HMS data
if single_RGB.shape[1]>single_RGB.shape[0]: # width>height
scale_percent = (square_size/single_RGB.shape[1])*100
else: # width<height
scale_percent = (square_size/single_RGB.shape[0])*100
width = int(single_RGB.shape[1] * scale_percent / 100); height = int(single_RGB.shape[0] * scale_percent / 100); dim = (width, height)
sect_mask = cv2.resize(single_RGB, dim, interpolation = cv2.INTER_AREA)
sect_padd = (np.ones((square_size,square_size,3)))*np.mean(single_RGB[:10,:10])
sect_padd[int((square_size-np.shape(sect_mask)[0])/2):int((square_size-np.shape(sect_mask)[0])/2)+np.shape(sect_mask)[0],
int((square_size-np.shape(sect_mask)[1])/2):int((square_size-np.shape(sect_mask)[1])/2)+np.shape(sect_mask)[1],:] = sect_mask
return sect_padd
def square_padding(single_gray,square_size=256):
# e.g. square_size = 256 by default
# takes a raw image as input
# returns a square (padded) image as output
# input: 2D image
# output: 2D resized padded image
# example: BNI images, HMS data
if len(np.shape(single_gray))>2:
return square_padding_RGB(single_gray[:,:,:3])
else:
# print("Single gray shape:", np.shape(single_gray))
if single_gray.shape[1]>single_gray.shape[0]: # width>height
scale_percent = (square_size/single_gray.shape[1])*100
else: # width<height
scale_percent = (square_size/single_gray.shape[0])*100
width = int(single_gray.shape[1] * scale_percent / 100); height = int(single_gray.shape[0] * scale_percent / 100); dim = (width, height)
# print("Dim::", dim)
sect_mask = cv2.resize(single_gray, dim, interpolation = cv2.INTER_AREA)
sect_padd = (np.zeros((square_size,square_size)))*single_gray[-20,-20]#find a better solution for single_gray[100,-100]
sect_padd[int((square_size-np.shape(sect_mask)[0])/2):int((square_size-np.shape(sect_mask)[0])/2)+np.shape(sect_mask)[0],
int((square_size-np.shape(sect_mask)[1])/2):int((square_size-np.shape(sect_mask)[1])/2)+np.shape(sect_mask)[1]] = sect_mask
return sect_padd
def affine_reg(fixed_image,moving_image,gauss_param=100):
# this function takes fixed and moving images as input and return affine transformation matrix
# fixed/moving images can be 2D/3D
# todo: add an option as flag to save the transformation matrix and displacement fields at the desired location to be able to apply the transforms later
mytx = ants.registration(fixed=fixed_image,
moving=moving_image,
type_of_transform='Affine',
reg_iterations = (gauss_param,gauss_param,gauss_param,gauss_param))
print('affine registration completed')
return mytx
def nonrigid_reg(fixed_image,mytx,type_of_transform='SyN',grad_step=0.25,reg_iterations=(50,50,50, ),flow_sigma=9,total_sigma=0.2):
# this function takes fixed image and affined tx matrix as input and return non-rigid transformation matrix
# fixed/moving images can be 2D/3D
# type of transform selection: https://antspy.readthedocs.io/en/latest/registration.html
# todo: scale the function to incorporate the extended parameters for type_of_transform
# todo: scale the function to incorporate the affine+non-rigid simultaneously in case of SyNRA
transform_type = {'SyN':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma},
'SyNRA':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma}}
mytx_non_rigid = ants.registration(fixed = fixed_image,
moving=mytx['warpedmovout'],
type_of_transform=type_of_transform,
grad_step=transform_type[type_of_transform]['grad_step'],
reg_iterations=transform_type[type_of_transform]['reg_iterations'],
flow_sigma=transform_type[type_of_transform]['flow_sigma'],
total_sigma=transform_type[type_of_transform]['total_sigma'])
print('non-rigid registration completed')
return mytx_non_rigid
def affine_reg(fixed_image,moving_image,gauss_param=100):
# this function takes fixed and moving images as input and return affine transformation matrix
# fixed/moving images can be 2D/3D
# todo: add an option as flag to save the transformation matrix and displacement fields at the desired location to be able to apply the transforms later
mytx = ants.registration(fixed=fixed_image,
moving=moving_image,
type_of_transform='Affine',
reg_iterations = (gauss_param,gauss_param,gauss_param,gauss_param))
print('affine registration completed')
return mytx
def nonrigid_reg(fixed_image,mytx,type_of_transform='SyN',grad_step=0.25,reg_iterations=(50,50,50, ),flow_sigma=9,total_sigma=0.2):
# this function takes fixed image and affined tx matrix as input and return non-rigid transformation matrix
# fixed/moving images can be 2D/3D
# type of transform selection: https://antspy.readthedocs.io/en/latest/registration.html
# todo: scale the function to incorporate the extended parameters for type_of_transform
# todo: scale the function to incorporate the affine+non-rigid simultaneously in case of SyNRA
transform_type = {'SyN':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma},
'SyNRA':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma}}
mytx_non_rigid = ants.registration(fixed = fixed_image,
moving=mytx['warpedmovout'],
type_of_transform=type_of_transform,
grad_step=transform_type[type_of_transform]['grad_step'],
reg_iterations=transform_type[type_of_transform]['reg_iterations'],
flow_sigma=transform_type[type_of_transform]['flow_sigma'],
total_sigma=transform_type[type_of_transform]['total_sigma'])
print('non-rigid registration completed')
return mytx_non_rigid
def run_3D_registration(user_section, ):
global allen_atlas_ccf, allen_template_ccf
template_atlas = allen_atlas_ccf
template_section = allen_template_ccf
template_atlas = np.uint16(template_atlas*255)
user_section = square_padd(user_section, (60, 76, 92))
template_atlas = square_padd(template_atlas, user_section.shape)
template_section = square_padd(template_section, user_section.shape)
fixed_image = ants.from_numpy(user_section)
moving_atlas_ants = ants.from_numpy(template_atlas)
moving_image = ants.from_numpy(template_section)
mytx = affine_reg(fixed_image,moving_image)
mytx_non_rigid = nonrigid_reg(fixed_image,mytx)
affined_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=moving_image,
transformlist=mytx['fwdtransforms'],
interpolator='nearestNeighbor')
nonrigid_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=affined_fixed_atlas,
transformlist=mytx_non_rigid['fwdtransforms'],
interpolator='nearestNeighbor')
gallery_images = natsorted(load_gallery_images())
transformed_images = []
if not(os.path.exists("Overlaped_registered")):
os.mkdir("Overlaped_registered")
# registered = nonrigid_fixed_atlas.numpy()/255
# for id in list(range((registered.shape[0]//2)-15, (registered.shape[0]//2)+15, 2)):
# print(id)
# plt.imsave(f'Overlaped_registered/{id}.png',registered[id, :, :], cmap = 'gray' )
# transformed_images.append(f'Overlaped_registered/{id}.png')
for i in range(len(gallery_images)-10):
im = plt.imread(gallery_images[i])
fname = os.path.split(gallery_images[i])[-1]
moving_image_slice = ants.from_numpy(square_padding(gray_scale(im)))
affined_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=moving_image,
transformlist=mytx['fwdtransforms'],
interpolator='nearestNeighbor')
nonrigid_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=affined_fixed_atlas,
transformlist=mytx_non_rigid['fwdtransforms'],
interpolator='nearestNeighbor')
# print(im.shape, nonrigid_fixed_atlas.numpy().shape)
reconverted_img = reconvert_to_rgb(im[:,:,:3], nonrigid_fixed_atlas.numpy()[i,:,:])
plt.imsave(f'Overlaped_registered/{fname}',(reconverted_img * 255).astype(np.uint8))
transformed_images.append(f'Overlaped_registered/{fname}')
transformed_images = natsorted(load_gallery_images())
return transformed_images
def run_2D_registration(user_section, slice_idx):
global allen_atlas_ccf, allen_template_ccf, gallery_selected_data
template_atlas = allen_atlas_ccf
template_section = allen_template_ccf
template_atlas = allen_atlas_ccf[slice_idx,:,:]
template_section = allen_template_ccf[slice_idx,:,:]
# colored_atlas = colored_atlas[slice_idx,:,:]
print(np.shape(template_atlas), np.shape(template_section))
user_section = square_padding(user_section)
template_atlas = np.uint16(template_atlas*255)
template_atlas = square_padding(template_atlas)
template_section = square_padding(template_section)
fixed_image = ants.from_numpy(user_section)
moving_atlas_ants = ants.from_numpy(template_atlas)
moving_image = ants.from_numpy(template_section)
mytx = affine_reg(fixed_image,moving_image)
mytx_non_rigid = nonrigid_reg(fixed_image,mytx)
gallery_imgs = natsorted(load_gallery_images())
im = plt.imread(gallery_imgs[gallery_selected_data])
print(im.shape)
moving_gallery_img = ants.from_numpy(square_padding(gray_scale(im)))
affined_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=moving_gallery_img,
transformlist=mytx['fwdtransforms'],
interpolator='nearestNeighbor')
nonrigid_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=affined_fixed_atlas,
transformlist=mytx_non_rigid['fwdtransforms'],
interpolator='nearestNeighbor')
gallery_images = load_gallery_images()
transformed_images = []
if not(os.path.exists("Overlaped_registered")):
os.mkdir("Overlaped_registered")
print("Reconverting Image")
reconverted_img = reconvert_to_rgb(im[:,:,:3], nonrigid_fixed_atlas.numpy())
plt.imsave(f'Overlaped_registered/registered_slice_reconverted_1.png',(reconverted_img * 255).astype(np.uint8))
return ['Overlaped_registered/registered_slice_reconverted_1.png']
def reconvert_to_rgb(img_rgb, img_gray_processed):
# 3. Resize original RGB to match processed grayscale shape
original_shape = img_gray_processed.shape
img_rgb_resized = resize(img_rgb, (original_shape[0], original_shape[1]), preserve_range=True)
# 4. Convert resized RGB to grayscale
gray_resized = np.mean(img_rgb_resized, axis=2) + 1e-8 # avoid divide-by-zero
# 5. Compute ratio of new_gray / old_gray, apply to RGB channels
ratio = img_gray_processed / gray_resized
img_recolored = img_rgb_resized * ratio[..., np.newaxis]
# 6. Clip values to [0, 1] if image is in float format (common for imread)
# img_recolored = np.clip(img_recolored, 0, 1)
return img_recolored
def embeddings_classifier(user_section, atlas_embeddings,atlas_labels):
class SliceEncoder(nn.Module):
def __init__(self):
super(SliceEncoder, self).__init__()
base = models.resnet18(pretrained=True)
self.backbone = nn.Sequential(*list(base.children())[:-1]) # Remove final FC layer
def forward(self, x):
x = self.backbone(x) # Output shape: (B, 512, 1, 1)
return x.view(x.size(0), -1) # Flatten to (B, 512)
# Transform
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Feature extraction utility
def extract_embedding(img_array, encoder, transform):
img = Image.fromarray(((img_array) * 255).astype(np.uint8)).convert('RGB')
img_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
embedding = encoder(img_tensor)
return embedding.cpu().numpy().flatten()
# Prepare device and model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
encoder = SliceEncoder().to(device).eval()
# Precompute atlas embeddings
query_emb = extract_embedding(user_section, encoder, transform).reshape(1, -1)
sims = cosine_similarity(query_emb, atlas_embeddings)[0]
pred_idx = np.argmax(sims)
pred_gt = atlas_labels[pred_idx]
return int(pred_gt)
def gray_scale(image):
# input: a 2D RGB image (x,y,z)
# output: a grayscale image (x,y)
# todo: fix the depth issue of pixels
if len(np.shape(image))>2:
return cv2.cvtColor(image[:,:,:3], cv2.COLOR_RGB2GRAY)
else:
return image
def atlas_slice_prediction(user_section, axis = 'coronal'):
user_section = gray_scale(square_padding(gray_scale(user_section)))
user_section = gray_scale(user_section)
user_section = square_padding(user_section, 224)
user_section = (user_section - np.min(user_section))/((np.max(user_section) - np.min(user_section)))
print("Loading model")
atlas_embeddings = np.load(f"registration/atlas_embeddings_{axis}.npy")
atlas_labels = np.load(f"registration/atlas_labels_{axis}.npy")
idx = embeddings_classifier(user_section, atlas_embeddings,atlas_labels)
return idx
example_files = [
["./resampled_green_25.nii.gz", "CCF registered Sample", "3D"],
["./Brain_1.png", "Custom Sample", "2D"],
# ["examples/sample3.nii.gz"]
]
# Global variables
coronal_slices = []
last_probabilities = []
prob_df = pd.DataFrame()
vol = None
slice_idx = None
# Target cell types
cell_types = [
"ABC.NN", "Astro.TE.NN", "CLA.EPd.CTX.Car3.Glut", "Endo.NN", "L2.3.IT.CTX.Glut",
"L4.5.IT.CTX.Glut", "L5.ET.CTX.Glut", "L5.IT.CTX.Glut", "L5.NP.CTX.Glut", "L6.CT.CTX.Glut",
"L6.IT.CTX.Glut", "L6b.CTX.Glut", "Lamp5.Gaba", "Lamp5.Lhx6.Gaba", "Lymphoid.NN", "Microglia.NN",
"OPC.NN", "Oligo.NN", "Peri.NN", "Pvalb.Gaba", "Pvalb.chandelier.Gaba", "SMC.NN", "Sncg.Gaba",
"Sst.Chodl.Gaba", "Sst.Gaba", "VLMC.NN", "Vip.Gaba"
]
actual_ids = [30,52,71,91,104,109,118,126,131,137,141,164,178,182,197,208,218,226,232,242,244,248,256,262,270,282,293,297,308,323,339,344,350,355,364,372,379,389,395,401,410,415,418,424,429,434,440,444,469,479,487,509]
gallery_ids = [5,6,8,9,10,11,12,13,14,15,16,17,18,19,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61,62,64,66,67]
# gallery_ids.reverse()
allen_atlas_ccf, header = nrrd.read('./registration/annotation_25.nrrd')
allen_template_ccf, _ = nrrd.read("./registration/average_template_25.nrrd")
# colored_atlas,_ = nrrd.read('./registration/colored_atlas_turbo.nrrd')
gallery_selected_data = None
def load_nifti_or_png(file, sample_type, data_type):
global coronal_slices, vol, slice_idx, gallery_selected_data
if file.name.endswith(".nii") or file.name.endswith(".nii.gz"):
img = nib.load(file.name)
vol = img.get_fdata()
coronal_slices = [vol[i, :, :] for i in range(vol.shape[0])]
if data_type == "2D":
mid_index = vol.shape[0] // 2
slice_img = Image.fromarray((coronal_slices[mid_index] / np.max(coronal_slices[mid_index]) * 255).astype(np.uint8))
gallery_images = load_gallery_images()
return (
slice_img,
gr.update(visible=False),
gallery_images,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=(sample_type == "Custom Sample"))
)
else: # 3D with actual_ids only
coronal_slices = [vol[i, :, :] for i in actual_ids]
idx = len(actual_ids) // 2 # Mid of actual_ids
slice_img = Image.fromarray((coronal_slices[idx] / np.max(coronal_slices[idx]) * 255).astype(np.uint8))
gallery_images = load_gallery_images()
gallery_images = natsorted(gallery_images)
return (
slice_img,
gr.update(visible=True, minimum=0, maximum=len(coronal_slices)-1, value=idx),
gallery_images,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=(sample_type == "Custom Sample"))
)
else:
img = Image.open(file.name).convert("L")
vol = np.array(img)
coronal_slices = [np.array(img)]
gallery_images = natsorted(load_gallery_images())
idx = atlas_slice_prediction(np.array(img))
slice_idx = idx
closest_actual_idx = min(actual_ids, key=lambda x: abs(x - idx))
gallery_index = actual_ids.index(closest_actual_idx)
print(gallery_index, len(actual_ids) -(gallery_index))
gallery_selected_data = len(actual_ids) -(gallery_index)
return (
img,
gr.update(visible=False),
gr.update(selected_index=len(actual_ids) -(gallery_index) if gallery_index < len(gallery_ids) else 0, visible = True),
# gr.update(value=gallery_images, selected_index=len(actual_ids) -(gallery_index)), # gallery
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=(sample_type == "Custom Sample"))
)
def update_slice(index):
if not coronal_slices:
return None, None, None
slice_img = Image.fromarray((coronal_slices[index] / np.max(coronal_slices[index]) * 255).astype(np.uint8))
gallery_selection = gr.update(selected_index=len(gallery_ids) - index if index < len(gallery_ids) else 0)
if last_probabilities:
noise = np.random.normal(0, 0.01, size=len(last_probabilities))
new_probs = np.clip(np.array(last_probabilities) + noise, 0, None)
new_probs /= new_probs.sum()
else:
new_probs = []
return slice_img, plot_probabilities(new_probs), gallery_selection
def load_gallery_images():
folder = "Overlapped_updated"
images = []
if os.path.exists(folder):
for fname in sorted(os.listdir(folder)):
if fname.lower().endswith(('.png', '.jpg', '.jpeg')):
images.append(os.path.join(folder, fname))
return images
def generate_random_probabilities():
probs = np.random.rand(len(cell_types))
low_indices = np.random.choice(len(probs), size=5, replace=False)
for idx in low_indices:
probs[idx] = np.random.rand() * 0.01
probs /= probs.sum()
return probs.tolist()
def plot_probabilities(probabilities):
if len(probabilities) < 1:
return None
prob_df = pd.DataFrame({"labels": cell_types, "values": probabilities})
os.makedirs("outputs", exist_ok=True)
prob_df.to_csv('outputs/Cell_types_predictions.csv', index=False)
return prob_df
def run_mapping():
global last_probabilities
last_probabilities = generate_random_probabilities()
return plot_probabilities(last_probabilities), gr.update(visible=True), gr.update(value = 'outputs/Cell_types_predictions.csv', visible = True), gr.update(visible=True)
def run_registration(data_type, selected_idx):
global vol, slice_idx
print("Running registration logic here..., Vol shape::", vol.shape)
if data_type == "3D":
gallery_images = run_3D_registration(vol)
else:
gallery_images = run_2D_registration(vol, slice_idx)
return gallery_images
return "Registration complete!"
def download_csv():
return 'outputs/Cell_types_predictions.csv'
def handle_data_type_change(dt):
if dt == "2D":
return gr.update(visible=False)
else:
return gr.update(visible=True, minimum=0, maximum=len(actual_ids)-1, value=len(actual_ids)//2)
def on_select(evt: gr.SelectData):
print("Selected index:", evt)
print("Selected value:", evt.value)
print("Selected coordinates:", evt.selected)
gallery_selected_data = evt.index
gallery_images = natsorted(load_gallery_images())
with gr.Blocks() as demo:
gr.Markdown("# Map My Sections\n### This GUI is part of the submission to the Allen Institute's Map My Sections tool by Tibbling Technologies.")
with gr.Row():
gr.Markdown("### Step 1: Upload your sample, currently only .nii.gz (3D) and .png (2D) supported")
gr.Markdown("### Step 2: Select your sample and data type.")
with gr.Row():
nifti_file = gr.File(label="File Upload")
with gr.Column():
sample_type = gr.Dropdown(choices=["CCF registered Sample", "Custom Sample"], value="CCF registered Sample", label="Sample Type")
data_type = gr.Radio(choices=["2D", "3D"], value="3D", label="Data Type")
gr.Examples(examples=example_files, inputs=[nifti_file, sample_type, data_type], label="Try one of our example samples")
with gr.Row(visible=False) as slice_row:
with gr.Column(scale=1):
gr.Markdown("### Step 3: Visualizing your uploaded sample")
image_display = gr.Image(height=450)
slice_slider = gr.Slider(minimum=0, maximum=0, value=0, step=1, label="Slices", visible=False)
with gr.Column(scale=1):
gr.Markdown("### Step 4: Visualizing Allen Brain Cell Types Atlas")
gallery = gr.Gallery(label="ABC Atlas", value = gallery_images,columns = 5, height = 450)
gr.Markdown("### Step 5: Run cell type mapping and/or registeration. ")
with gr.Row():
run_button = gr.Button("Map My Sections")
reg_button = gr.Button("Run Registration (Optional)", visible=False)
with gr.Column(visible=False) as plot_row:
gr.Markdown("### Step 6: Quantitative results of the mapping model.")
prob_plot = gr.BarPlot(prob_df, x="labels", y="values", title="Cell Type Probabilities", scroll_to_output=True, x_label_angle=-90, height=400)
download_step = gr.Markdown("### Step 7: Download Results.", visible = False)
download_button = gr.DownloadButton(label="Download Results", visible = False)
nifti_file.change(
load_nifti_or_png,
inputs=[nifti_file, sample_type, data_type],
outputs=[image_display, slice_slider, gallery, slice_row, plot_row, reg_button]
)
sample_type.change(
lambda s: (gr.update(visible=True), gr.update(visible=(s == "Custom Sample"))),
inputs=sample_type,
outputs=[slice_row, reg_button]
)
data_type.change(
handle_data_type_change,
inputs=data_type,
outputs=slice_slider
)
gallery.select(on_select, inputs=None, outputs=None)
slice_slider.change(update_slice, inputs=slice_slider, outputs=[image_display, prob_plot, gallery])
run_button.click(run_mapping, outputs=[prob_plot, plot_row, download_button, download_step])
reg_button.click(run_registration,inputs = [data_type], outputs=[gallery])
demo.launch()