File size: 12,508 Bytes
c436cf7
908127c
 
3df2cca
 
c59cc6c
f0ebec2
3df2cca
f0ebec2
b968ba2
908127c
 
 
b968ba2
908127c
b968ba2
c436cf7
 
b968ba2
b7333e0
b968ba2
c436cf7
 
 
 
 
 
b968ba2
908127c
b968ba2
908127c
 
 
 
 
 
 
 
 
 
eb874d4
b968ba2
 
 
eb874d4
 
908127c
b968ba2
 
 
 
 
908127c
 
 
 
 
b968ba2
 
908127c
 
b968ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ebec2
b968ba2
f0ebec2
3df2cca
 
b968ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df2cca
b968ba2
 
 
3df2cca
f0ebec2
3df2cca
 
 
 
 
 
 
 
c59cc6c
3df2cca
b968ba2
 
3df2cca
 
 
 
c436cf7
3df2cca
 
 
 
 
c59cc6c
b968ba2
3df2cca
 
 
 
 
c436cf7
b968ba2
 
c436cf7
b968ba2
c59cc6c
b968ba2
 
 
 
 
 
c59cc6c
 
 
3df2cca
 
c59cc6c
 
 
c436cf7
3df2cca
 
 
c59cc6c
 
b968ba2
c436cf7
b968ba2
 
 
3df2cca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
import torch
import numpy as np
import random
import json
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from pydantic import BaseModel

# Lade RecipeBERT Modell (für semantische Zutat-Kombination)
bert_model_name = "alexdseo/RecipeBERT"
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
bert_model = AutoModel.from_pretrained(bert_model_name)
bert_model.eval() # Setze das Modell in den Evaluationsmodus

# Lade T5 Rezeptgenerierungsmodell
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation"
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH)

# Token Mapping für die T5 Modell-Ausgabe
special_tokens = t5_tokenizer.all_special_tokens
tokens_map = {
    "<sep>": "--",
    "<section>": "\n"
}

# --- RecipeBERT-spezifische Funktionen ---
def get_embedding(text):
    """Berechnet das Embedding für einen Text mit Mean Pooling über alle Tokens"""
    inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = bert_model(**inputs)
    attention_mask = inputs['attention_mask']
    token_embeddings = outputs.last_hidden_state
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    return (sum_embeddings / sum_mask).squeeze(0)

def average_embedding(embedding_list):
    """Berechnet den Durchschnitt einer Liste von Embeddings"""
    # Sicherstellen, dass embedding_list Tupel von (Name, Embedding) enthält
    tensors = torch.stack([emb for _, emb in embedding_list])
    return tensors.mean(dim=0)

def get_cosine_similarity(vec1, vec2):
    """Berechnet die Cosinus-Ähnlichkeit zwischen zwei Vektoren"""
    if torch.is_tensor(vec1):
        vec1 = vec1.detach().numpy()
    if torch.is_tensor(vec2):
        vec2 = vec2.detach().numpy()
    vec1 = vec1.flatten()
    vec2 = vec2.flatten()
    dot_product = np.dot(vec1, vec2)
    norm_a = np.linalg.norm(vec1)
    norm_b = np.linalg.norm(vec2)
    if norm_a == 0 or norm_b == 0:
        return 0
    return dot_product / (norm_a * norm_b)

def get_combined_scores(query_vector, embedding_list, all_good_embeddings, avg_weight=0.6):
    """Berechnet einen kombinierten Score unter Berücksichtigung der Ähnlichkeit zum Durchschnitt und zu einzelnen Zutaten"""
    results = []
    for name, emb in embedding_list:
        avg_similarity = get_cosine_similarity(query_vector, emb)
        individual_similarities = [get_cosine_similarity(good_emb, emb)
                                   for _, good_emb in all_good_embeddings]
        avg_individual_similarity = sum(individual_similarities) / len(individual_similarities) if individual_similarities else 0
        combined_score = avg_weight * avg_similarity + (1 - avg_weight) * avg_individual_similarity
        results.append((name, emb, combined_score))
    results.sort(key=lambda x: x[2], reverse=True)
    return results

# Die vollständige find_best_ingredients Funktion, die du bereitgestellt hast
def find_best_ingredients(required_ingredients, available_ingredients, max_ingredients=6, avg_weight=0.6):
    """
    Findet die besten Zutaten basierend auf RecipeBERT Embeddings.
    """
    required_ingredients = list(set(required_ingredients))
    available_ingredients = list(set([i for i in available_ingredients if i not in required_ingredients]))
    
    if not required_ingredients and available_ingredients:
        random_ingredient = random.choice(available_ingredients)
        required_ingredients = [random_ingredient]
        available_ingredients = [i for i in available_ingredients if i != random_ingredient]
        print(f"No required ingredients provided. Randomly selected: {random_ingredient}")
    
    if not required_ingredients or len(required_ingredients) >= max_ingredients:
        return required_ingredients[:max_ingredients]
    
    if not available_ingredients:
        return required_ingredients
    
    embed_required = [(e, get_embedding(e)) for e in required_ingredients]
    embed_available = [(e, get_embedding(e)) for e in available_ingredients]
    
    num_to_add = min(max_ingredients - len(required_ingredients), len(available_ingredients))
    
    final_ingredients = embed_required.copy()
    
    for _ in range(num_to_add):
        avg = average_embedding(final_ingredients)
        candidates = get_combined_scores(avg, embed_available, final_ingredients, avg_weight)
        
        if not candidates:
            break
            
        best_name, best_embedding, _ = candidates[0]
        
        final_ingredients.append((best_name, best_embedding))
        
        embed_available = [item for item in embed_available if item[0] != best_name]
    
    return [name for name, _ in final_ingredients]

def skip_special_tokens(text, special_tokens):
    """Entfernt spezielle Tokens aus dem Text"""
    for token in special_tokens:
        text = text.replace(token, "")
    return text

def target_postprocessing(texts, special_tokens):
    """Post-processed generierten Text"""
    if not isinstance(texts, list):
        texts = [texts]
    new_texts = []
    for text in texts:
        text = skip_special_tokens(text, special_tokens)
        for k, v in tokens_map.items():
            text = text.replace(k, v)
        new_texts.append(text)
    return new_texts

def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0):
    """
    Validiert, ob das Rezept ungefähr die erwarteten Zutaten enthält.
    """
    recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()])
    expected_count = len(expected_ingredients)
    return abs(recipe_count - expected_count) == tolerance

def generate_recipe_with_t5(ingredients_list, max_retries=5):
    """Generiert ein Rezept mit dem T5 Rezeptgenerierungsmodell mit Validierung."""
    original_ingredients = ingredients_list.copy()
    for attempt in range(max_retries):
        try:
            if attempt > 0:
                current_ingredients = original_ingredients.copy()
                random.shuffle(current_ingredients)
            else:
                current_ingredients = ingredients_list
            ingredients_string = ", ".join(current_ingredients)
            prefix = "items: "
            generation_kwargs = {
                "max_length": 512,
                "min_length": 64,
                "do_sample": True,
                "top_k": 60,
                "top_p": 0.95
            }
            print(f"Attempt {attempt + 1}: {prefix + ingredients_string}") # Debug-Print
            inputs = t5_tokenizer(
                prefix + ingredients_string,
                max_length=256,
                padding="max_length",
                truncation=True,
                return_tensors="jax"
            )
            output_ids = t5_model.generate(
                input_ids=inputs.input_ids,
                attention_mask=inputs.attention_mask,
                **generation_kwargs
            )
            generated = output_ids.sequences
            generated_text = target_postprocessing(
                t5_tokenizer.batch_decode(generated, skip_special_tokens=False),
                special_tokens
            )[0]
            recipe = {}
            sections = generated_text.split("\n")
            for section in sections:
                section = section.strip()
                if section.startswith("title:"):
                    recipe["title"] = section.replace("title:", "").strip().capitalize()
                elif section.startswith("ingredients:"):
                    ingredients_text = section.replace("ingredients:", "").strip()
                    recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if item.strip()]
                elif section.startswith("directions:"):
                    directions_text = section.replace("directions:", "").strip()
                    recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if step.strip()]
            
            if "title" not in recipe:
                recipe["title"] = f"Rezept mit {', '.join(current_ingredients[:3])}"
            if "ingredients" not in recipe:
                recipe["ingredients"] = current_ingredients
            if "directions" not in recipe:
                recipe["directions"] = ["Keine Anweisungen generiert"]
            
            if validate_recipe_ingredients(recipe["ingredients"], original_ingredients):
                print(f"Success on attempt {attempt + 1}: Recipe has correct number of ingredients") # Debug-Print
                return recipe
            else:
                print(f"Attempt {attempt + 1} failed: Expected {len(original_ingredients)} ingredients, got {len(recipe['ingredients'])}") # Debug-Print
                if attempt == max_retries - 1:
                    print("Max retries reached, returning last generated recipe") # Debug-Print
                    return recipe
        except Exception as e:
            print(f"Error in recipe generation attempt {attempt + 1}: {str(e)}") # Debug-Print
            if attempt == max_retries - 1:
                return {
                    "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
                    "ingredients": original_ingredients,
                    "directions": ["Fehler beim Generieren der Rezeptanweisungen"]
                }
    return {
        "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
        "ingredients": original_ingredients,
        "directions": ["Fehler beim Generieren der Rezeptanweisungen"]
    }

def process_recipe_request_logic(required_ingredients, available_ingredients, max_ingredients, max_retries):
    """
    Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
    """
    if not required_ingredients and not available_ingredients:
        return {"error": "Keine Zutaten angegeben"}
    try:
        optimized_ingredients = find_best_ingredients(
            required_ingredients, available_ingredients, max_ingredients
        )
        # KORRIGIERT: Aufruf der echten T5-Generierungsfunktion
        recipe = generate_recipe_with_t5(optimized_ingredients, max_retries)
        result = {
            'title': recipe['title'],
            'ingredients': recipe['ingredients'],
            'directions': recipe['directions'],
            'used_ingredients': optimized_ingredients
        }
        return result
    except Exception as e:
        return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}

# --- FastAPI-Implementierung ---
app = FastAPI(title="AI Recipe Generator API") # Ohne Gradio-spezifische Titelzusätze

class RecipeRequest(BaseModel):
    required_ingredients: list[str] = []
    available_ingredients: list[str] = []
    max_ingredients: int = 7
    max_retries: int = 5
    # Optional: Für Abwärtskompatibilität, falls 'ingredients' als Top-Level-Feld gesendet wird
    ingredients: list[str] = []

@app.post("/generate_recipe") # Der API-Endpunkt für Flutter
async def generate_recipe_api(request_data: RecipeRequest):
    """
    Standard-REST-API-Endpunkt für die Flutter-App.
    Nimmt direkt JSON-Daten an und gibt direkt JSON zurück.
    """
    # Wenn required_ingredients leer ist, aber ingredients vorhanden sind,
    # verwende ingredients für Abwärtskompatibilität.
    final_required_ingredients = request_data.required_ingredients
    if not final_required_ingredients and request_data.ingredients:
        final_required_ingredients = request_data.ingredients

    result_dict = process_recipe_request_logic(
        final_required_ingredients,
        request_data.available_ingredients,
        request_data.max_ingredients,
        request_data.max_retries
    )
    return JSONResponse(content=result_dict)

@app.get("/")
async def read_root():
    return {"message": "AI Recipe Generator API is running (FastAPI only)!"} # Angepasste Nachricht

# Hier gibt es KEINEN Gradio-Mount oder Gradio-Launch-Befehl
# Das `app` Objekt ist eine reine FastAPI-Instanz
print("INFO: Pure FastAPI application script finished execution and defined 'app' variable.")