DockerRecipe / app.py
TimInf's picture
Update app.py
f324ef3 verified
raw
history blame
15.7 kB
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
import torch
import numpy as np
import random
import json
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from datetime import datetime, timedelta # Importieren für Datumsberechnungen
# Lade RecipeBERT Modell (für semantische Zutat-Kombination)
bert_model_name = "alexdseo/RecipeBERT"
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
bert_model = AutoModel.from_pretrained(bert_model_name)
bert_model.eval() # Setze das Modell in den Evaluationsmodus
# Lade T5 Rezeptgenerierungsmodell
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation"
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH)
# Token Mapping für die T5 Modell-Ausgabe
special_tokens = t5_tokenizer.all_special_tokens
tokens_map = {
"<sep>": "--",
"<section>": "\n"
}
# --- RecipeBERT-spezifische Funktionen ---
def get_embedding(text):
"""Berechnet das Embedding für einen Text mit Mean Pooling über alle Tokens"""
inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = bert_model(**inputs)
attention_mask = inputs['attention_mask']
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return (sum_embeddings / sum_mask).squeeze(0)
def average_embedding(embedding_list):
"""Berechnet den Durchschnitt einer Liste von Embeddings"""
tensors = torch.stack([emb for _, emb in embedding_list])
return tensors.mean(dim=0)
def get_cosine_similarity(vec1, vec2):
"""Berechnet die Cosinus-Ähnlichkeit zwischen zwei Vektoren"""
if torch.is_tensor(vec1):
vec1 = vec1.detach().numpy()
if torch.is_tensor(vec2):
vec2 = vec2.detach().numpy()
vec1 = vec1.flatten()
vec2 = vec2.flatten()
dot_product = np.dot(vec1, vec2)
norm_a = np.linalg.norm(vec1)
norm_b = np.linalg.norm(vec2)
if norm_a == 0 or norm_b == 0:
return 0
return dot_product / (norm_a * norm_b)
# NEUE FUNKTION: Berechnet den Altersbonus für eine Zutat
def calculate_age_bonus(date_added_str: str, category: str) -> float:
"""
Berechnet einen prozentualen Bonus basierend auf dem Alter der Zutat.
- Standard: 0.5% pro Tag, max. 10%.
- Gemüse: 2.0% pro Tag, max. 10%.
"""
try:
date_added = datetime.fromisoformat(date_added_str.replace('Z', '+00:00')) # Handle 'Z' for UTC
except ValueError:
print(f"Warning: Could not parse date_added_str: {date_added_str}. Returning 0 bonus.")
return 0.0
today = datetime.now()
days_since_added = (today - date_added).days
if days_since_added < 0: # Zutat aus der Zukunft? Ungültig.
return 0.0
if category and category.lower() == "vegetables":
daily_bonus = 0.02 # 2% pro Tag für Gemüse
else:
daily_bonus = 0.005 # 0.5% pro Tag für andere
bonus = days_since_added * daily_bonus
return min(bonus, 0.10) # Max 10% (0.10)
def get_combined_scores(query_vector, embedding_list_with_details, all_good_embeddings, avg_weight=0.6):
"""
Berechnet einen kombinierten Score unter Berücksichtigung der Ähnlichkeit zum Durchschnitt und zu einzelnen Zutaten.
Jetzt inklusive Altersbonus.
embedding_list_with_details: Liste von Tupeln (Name, Embedding, DateAddedStr, Category)
"""
results = []
for name, emb, date_added_str, category in embedding_list_with_details:
avg_similarity = get_cosine_similarity(query_vector, emb)
individual_similarities = [get_cosine_similarity(good_emb, emb)
for _, good_emb in all_good_embeddings]
avg_individual_similarity = sum(individual_similarities) / len(individual_similarities) if individual_similarities else 0
base_combined_score = avg_weight * avg_similarity + (1 - avg_weight) * avg_individual_similarity
# NEU: Altersbonus hinzufügen
age_bonus = calculate_age_bonus(date_added_str, category)
final_combined_score = base_combined_score + age_bonus
results.append((name, emb, final_combined_score, date_added_str, category)) # Behalte Details für Debug oder zukünftige Nutzung
results.sort(key=lambda x: x[2], reverse=True)
return results
def find_best_ingredients(required_ingredients_names, available_ingredients_details, max_ingredients=6, avg_weight=0.6):
"""
Findet die besten Zutaten basierend auf RecipeBERT Embeddings, jetzt mit Alters- und Kategorie-Bonus.
required_ingredients_names: Liste von Strings (nur Namen)
available_ingredients_details: Liste von Dicts (Name, DateAdded, Category)
"""
required_ingredients_names = list(set(required_ingredients_names))
# Filtern der verfügbaren Zutaten, um sicherzustellen, dass keine Pflichtzutaten dabei sind
# und gleichzeitig die Details beibehalten
available_ingredients_filtered_details = [
item for item in available_ingredients_details
if item['name'] not in required_ingredients_names
]
# Wenn keine Pflichtzutaten vorhanden sind, aber verfügbare, wähle eine zufällig als Pflichtzutat
if not required_ingredients_names and available_ingredients_filtered_details:
random_item = random.choice(available_ingredients_filtered_details)
required_ingredients_names = [random_item['name']]
# Entferne die zufällig gewählte Zutat aus den verfügbaren Details
available_ingredients_filtered_details = [
item for item in available_ingredients_filtered_details
if item['name'] != random_item['name']
]
print(f"No required ingredients provided. Randomly selected: {required_ingredients_names[0]}")
if not required_ingredients_names or len(required_ingredients_names) >= max_ingredients:
return required_ingredients_names[:max_ingredients]
if not available_ingredients_filtered_details:
return required_ingredients_names
# Erstelle Embeddings für Pflichtzutaten (nur Name und Embedding)
embed_required = [(name, get_embedding(name)) for name in required_ingredients_names]
# Erstelle Embeddings für verfügbare Zutaten, inklusive ihrer Details
embed_available_with_details = [
(item['name'], get_embedding(item['name']), item['dateAdded'], item['category'])
for item in available_ingredients_filtered_details
]
num_to_add = min(max_ingredients - len(required_ingredients_names), len(embed_available_with_details))
final_ingredients_with_embeddings = embed_required.copy() # (Name, Embedding)
final_ingredients_names = required_ingredients_names.copy() # Nur Namen zum Tracken der ausgewählten
for _ in range(num_to_add):
avg = average_embedding(final_ingredients_with_embeddings)
# Sende die Liste mit den detaillierten Zutaten an get_combined_scores
candidates = get_combined_scores(avg, embed_available_with_details, final_ingredients_with_embeddings, avg_weight)
if not candidates:
break
best_name, best_embedding, best_score, _, _ = candidates[0] # Holen Sie den besten Kandidaten
# Füge nur den Namen und das Embedding zum final_ingredients_with_embeddings hinzu
final_ingredients_with_embeddings.append((best_name, best_embedding))
final_ingredients_names.append(best_name)
# Entferne den besten Kandidaten aus den verfügbaren
embed_available_with_details = [item for item in embed_available_with_details if item[0] != best_name]
return final_ingredients_names
def skip_special_tokens(text, special_tokens):
"""Entfernt spezielle Tokens aus dem Text"""
for token in special_tokens:
text = text.replace(token, "")
return text
def target_postprocessing(texts, special_tokens):
"""Post-processed generierten Text"""
if not isinstance(texts, list):
texts = [texts]
new_texts = []
for text in texts:
text = skip_special_tokens(text, special_tokens)
for k, v in tokens_map.items():
text = text.replace(k, v)
new_texts.append(text)
return new_texts
def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0):
"""
Validiert, ob das Rezept ungefähr die erwarteten Zutaten enthält.
"""
recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()])
expected_count = len(expected_ingredients)
return abs(recipe_count - expected_count) == tolerance
def generate_recipe_with_t5(ingredients_list, max_retries=5):
"""Generiert ein Rezept mit dem T5 Rezeptgenerierungsmodell mit Validierung."""
original_ingredients = ingredients_list.copy()
for attempt in range(max_retries):
try:
if attempt > 0:
current_ingredients = original_ingredients.copy()
random.shuffle(current_ingredients)
else:
current_ingredients = ingredients_list
ingredients_string = ", ".join(current_ingredients)
prefix = "items: "
generation_kwargs = {
"max_length": 512,
"min_length": 64,
"do_sample": True,
"top_k": 60,
"top_p": 0.95
}
print(f"Attempt {attempt + 1}: {prefix + ingredients_string}") # Debug-Print
inputs = t5_tokenizer(
prefix + ingredients_string,
max_length=256,
padding="max_length",
truncation=True,
return_tensors="jax"
)
output_ids = t5_model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
**generation_kwargs
)
generated = output_ids.sequences
generated_text = target_postprocessing(
t5_tokenizer.batch_decode(generated, skip_special_tokens=False),
special_tokens
)[0]
recipe = {}
sections = generated_text.split("\n")
for section in sections:
section = section.strip()
if section.startswith("title:"):
recipe["title"] = section.replace("title:", "").strip().capitalize()
elif section.startswith("ingredients:"):
ingredients_text = section.replace("ingredients:", "").strip()
recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if item.strip()]
elif section.startswith("directions:"):
directions_text = section.replace("directions:", "").strip()
recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if step.strip()]
if "title" not in recipe:
recipe["title"] = f"Rezept mit {', '.join(current_ingredients[:3])}"
if "ingredients" not in recipe:
recipe["ingredients"] = current_ingredients
if "directions" not in recipe:
recipe["directions"] = ["Keine Anweisungen generiert"]
if validate_recipe_ingredients(recipe["ingredients"], original_ingredients):
print(f"Success on attempt {attempt + 1}: Recipe has correct number of ingredients") # Debug-Print
return recipe
else:
print(f"Attempt {attempt + 1} failed: Expected {len(original_ingredients)} ingredients, got {len(recipe['ingredients'])}") # Debug-Print
if attempt == max_retries - 1:
print("Max retries reached, returning last generated recipe") # Debug-Print
return recipe
except Exception as e:
print(f"Error in recipe generation attempt {attempt + 1}: {str(e)}") # Debug-Print
if attempt == max_retries - 1:
return {
"title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
"ingredients": original_ingredients,
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
}
return {
"title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
"ingredients": original_ingredients,
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
}
def process_recipe_request_logic(required_ingredients, available_ingredients_details, max_ingredients, max_retries):
"""
Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
available_ingredients_details: Liste von Dicts (Name, DateAdded, Category)
"""
if not required_ingredients and not available_ingredients_details:
return {"error": "Keine Zutaten angegeben"}
try:
# Die find_best_ingredients Funktion erwartet jetzt die detaillierte Liste
optimized_ingredients = find_best_ingredients(
required_ingredients, available_ingredients_details, max_ingredients
)
recipe = generate_recipe_with_t5(optimized_ingredients, max_retries)
result = {
'title': recipe['title'],
'ingredients': recipe['ingredients'],
'directions': recipe['directions'],
'used_ingredients': optimized_ingredients
}
return result
except Exception as e:
import traceback
traceback.print_exc() # Dies hilft bei der Fehlersuche im Log
return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}
# --- FastAPI-Implementierung ---
app = FastAPI(title="AI Recipe Generator API")
# NEU: Model für die empfangene Zutat mit Details
class IngredientDetail(BaseModel):
name: str
dateAdded: str # Muss ein String sein, da wir ihn als ISO 8601 empfangen
category: str
class RecipeRequest(BaseModel):
required_ingredients: list[str] = []
# NEU: available_ingredients ist jetzt eine Liste von IngredientDetail-Objekten
available_ingredients: list[IngredientDetail] = []
max_ingredients: int = 7
max_retries: int = 5
# Optional: Für Abwärtskompatibilität (kann entfernt werden, wenn nicht mehr benötigt)
ingredients: list[str] = []
@app.post("/generate_recipe")
async def generate_recipe_api(request_data: RecipeRequest):
"""
Standard-REST-API-Endpunkt für die Flutter-App.
Nimmt direkt JSON-Daten an und gibt direkt JSON zurück.
"""
final_required_ingredients = request_data.required_ingredients
if not final_required_ingredients and request_data.ingredients:
final_required_ingredients = request_data.ingredients
# Jetzt die detaillierten available_ingredients an die Logik übergeben
result_dict = process_recipe_request_logic(
final_required_ingredients,
request_data.available_ingredients, # Hier ist die Liste der IngredientDetail-Objekte
request_data.max_ingredients,
request_data.max_retries
)
return JSONResponse(content=result_dict)
@app.get("/")
async def read_root():
return {"message": "AI Recipe Generator API is running (FastAPI only)!"}
print("INFO: Pure FastAPI application script finished execution and defined 'app' variable.")