File size: 5,739 Bytes
d843704
 
 
 
 
 
 
 
 
 
cd7b74a
fe904d3
a9d9170
d843704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe904d3
d843704
 
 
 
 
 
 
 
 
fe904d3
d843704
3a2942a
d843704
 
fe904d3
 
 
 
d843704
 
fe904d3
d843704
 
 
 
3a2942a
d843704
 
 
3a2942a
d843704
 
 
 
 
 
 
3a2942a
d843704
 
 
3a2942a
d843704
 
 
 
3a2942a
d843704
 
 
fe904d3
d843704
 
 
 
 
3a2942a
d843704
3a2942a
 
d843704
3a2942a
 
 
 
c6a2b84
 
 
 
 
 
 
 
23a8632
c6a2b84
ea4ce23
3a2942a
a9d9170
 
 
 
 
3a2942a
a9d9170
 
 
 
 
 
 
 
 
 
3a2942a
a9d9170
ac11709
3a2942a
 
 
ba01937
 
ea4ce23
a9d9170
 
ea4ce23
3a2942a
ea4ce23
a9d9170
 
 
3a2942a
d843704
a9d9170
 
 
 
 
 
 
 
 
 
 
 
 
3a2942a
ba01937
8cc7dcc
3a2942a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors

OPENAI_API_KEY = "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"
PDF_URL = "https://www.westlondon.nhs.uk/download_file/view/1459/615"

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)

def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text

def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list

def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks

class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings

def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded'
    
def generate_text(openAI_key, prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message

def generate_answer(question, openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'

    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(openAI_key, prompt, "text-davinci-003")
    return answer

def question_answer(question):
    openAI_key = OPENAI_API_KEY
    url = PDF_URL
    download_pdf(url, 'corpus.pdf')
    load_recommender('corpus.pdf')

    if question.strip() == '':
        return '[ERROR]: Question field is empty'

    return generate_answer(question, openAI_key)

recommender = SemanticSearch()

title = 'PDF GPT'
description = """PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""

with gr.Blocks() as demo:
    gr.Markdown(f'<center><h1>{title}</h1></center>')
    gr.Markdown(description)

    with gr.Row():
        with gr.Group():
            question = gr.Textbox(label='Enter your question here')
            btn = gr.Button(value='Submit')
            btn.style(full_width=True)

        with gr.Group():
            answer = gr.Textbox(label='The answer to your question is :')

        btn.click(question_answer, inputs=[question], outputs=[answer])

demo.launch()