File size: 14,257 Bytes
f3d0f1e
 
 
 
38886c5
38166c5
 
 
 
38886c5
 
38166c5
 
 
 
 
 
 
 
 
 
 
 
38886c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38166c5
 
 
 
 
f3d0f1e
58be4d5
 
85df319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38166c5
85df319
 
58be4d5
 
f3d0f1e
38886c5
38166c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d0f1e
38166c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d0f1e
38166c5
85df319
 
 
 
38166c5
85df319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38166c5
85df319
38166c5
f3d0f1e
85df319
38166c5
 
 
 
 
 
 
 
85df319
38166c5
 
85df319
 
38166c5
 
85df319
 
38166c5
85df319
38166c5
85df319
38166c5
85df319
 
38166c5
 
 
 
85df319
 
 
 
38166c5
 
85df319
 
 
 
38166c5
f3d0f1e
38886c5
 
 
 
 
 
 
f3d0f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import psycopg2\n",
    "\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain_community.document_loaders import DataFrameLoader\n",
    "from langchain_community.embeddings import HuggingFaceEmbeddings\n",
    "from langchain_community.vectorstores import FAISS\n",
    "from datetime import datetime\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Retrieve Speeches"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# db_connection -----------------------------------------------------------\n",
    "con_details = {\n",
    "    \"host\"      : \"localhost\",\n",
    "    \"database\"  : \"next\",\n",
    "    \"user\"      : \"postgres\",\n",
    "    \"password\"  : \"postgres\",\n",
    "    \"port\"      : \"5433\"\n",
    "}\n",
    "con = psycopg2.connect(**con_details)\n",
    "\n",
    "# get data tables ---------------------------------------------------------\n",
    "df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n",
    "                        FROM open_discourse.speeches AS s\n",
    "                        INNER JOIN open_discourse.factions AS f ON\n",
    "                        s.faction_id = f.id;\"\"\", con)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Process speeches"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(set(df['party'].to_list()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Removing keys from interruptions of a speech\n",
    "df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) \n",
    "df['date'] = pd.to_datetime(df['date'])\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>speech_content</th>\n",
       "      <th>date</th>\n",
       "      <th>party</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>Meine Damen und Herren! Ich eröffne die 2. Sit...</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>Der Bundesrat ist versammelt, Herr Präsident.\\n</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>Ich danke für diese Erklärung. Ich stelle dami...</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>Ja, ich habe den Wunsch.\\n</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>Ich erteile dem Herrn Bundespräsidenten das Wo...</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930955</th>\n",
       "      <td>1084268</td>\n",
       "      <td>\\n\\nWir sind zwar Kollegen.</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930956</th>\n",
       "      <td>1084269</td>\n",
       "      <td>\\n\\nLiebe, sehr geehrte Frau Präsidentin!</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>CDU/CSU</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930957</th>\n",
       "      <td>1084270</td>\n",
       "      <td>\\n\\nVielen Dank.</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930958</th>\n",
       "      <td>1084272</td>\n",
       "      <td>\\n\\nDen Abschluss dieser Aktuellen Stunde bild...</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930959</th>\n",
       "      <td>1084273</td>\n",
       "      <td>\\n\\nSehr geehrte Frau Präsidentin! Werte Kolle...</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>SPD</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>930960 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "             id                                     speech_content       date  \\\n",
       "0             0  Meine Damen und Herren! Ich eröffne die 2. Sit... 1949-09-12   \n",
       "1             1    Der Bundesrat ist versammelt, Herr Präsident.\\n 1949-09-12   \n",
       "2             2  Ich danke für diese Erklärung. Ich stelle dami... 1949-09-12   \n",
       "3             3                         Ja, ich habe den Wunsch.\\n 1949-09-12   \n",
       "4             4  Ich erteile dem Herrn Bundespräsidenten das Wo... 1949-09-12   \n",
       "...         ...                                                ...        ...   \n",
       "930955  1084268                        \\n\\nWir sind zwar Kollegen. 2022-12-16   \n",
       "930956  1084269          \\n\\nLiebe, sehr geehrte Frau Präsidentin! 2022-12-16   \n",
       "930957  1084270                                   \\n\\nVielen Dank. 2022-12-16   \n",
       "930958  1084272  \\n\\nDen Abschluss dieser Aktuellen Stunde bild... 2022-12-16   \n",
       "930959  1084273  \\n\\nSehr geehrte Frau Präsidentin! Werte Kolle... 2022-12-16   \n",
       "\n",
       "            party  \n",
       "0       not found  \n",
       "1       not found  \n",
       "2       not found  \n",
       "3       not found  \n",
       "4       not found  \n",
       "...           ...  \n",
       "930955  not found  \n",
       "930956    CDU/CSU  \n",
       "930957  not found  \n",
       "930958  not found  \n",
       "930959        SPD  \n",
       "\n",
       "[930960 rows x 4 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Convert to proper time format\n",
    "df['date'] = pd.to_datetime(df['date'])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "def split_documents(df, min_chunk_size=100):\n",
    "    \"\"\"\n",
    "    Load documents from a DataFrame, split them into smaller chunks for vector storage and remove chunks of small size.\n",
    "\n",
    "    Parameters\n",
    "    ----------\n",
    "    df : pandas.DataFrame\n",
    "        A DataFrame containing the documents to be processed, with a column named 'speech_content'.\n",
    "    min_chunk_size : int, optional\n",
    "        Minimum number of characters a chunk must have to be included in the result. Default is 100.\n",
    "\n",
    "    Returns\n",
    "    -------\n",
    "    list\n",
    "        A list of split document chunks ready for further processing or vectorization.\n",
    "    \"\"\"\n",
    "    # Initialize a DataFrameLoader with the given DataFrame and specify the column containing the content to load\n",
    "    loader = DataFrameLoader(data_frame=df, page_content_column='speech_content')\n",
    "    # Load the data from the DataFrame into a suitable format for processing\n",
    "    data = loader.load()\n",
    "    # Initialize a RecursiveCharacterTextSplitter to split the text into chunks\n",
    "    splitter = RecursiveCharacterTextSplitter(\n",
    "        chunk_size=1024,\n",
    "        chunk_overlap=32,\n",
    "        length_function=len,\n",
    "        is_separator_regex=False,\n",
    "    )\n",
    "    # Split the loaded data into smaller chunks using the splitter\n",
    "    documents = splitter.split_documents(documents=data)\n",
    "    # Discard small chunks below the threshold\n",
    "    cleaned_documents = [doc for doc in documents if len(doc.page_content) >= min_chunk_size]\n",
    "\n",
    "    return cleaned_documents"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Python\\Lib\\site-packages\\huggingface_hub\\file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sucessfully created vector store for 1. legislature\n",
      "Sucessfully created vector store for 2. legislature\n",
      "Sucessfully created vector store for 3. legislature\n",
      "Sucessfully created vector store for 4. legislature\n",
      "Sucessfully created vector store for 5. legislature\n",
      "Sucessfully created vector store for 6. legislature\n",
      "Sucessfully created vector store for 7. legislature\n",
      "Sucessfully created vector store for 8. legislature\n",
      "Sucessfully created vector store for 9. legislature\n",
      "Sucessfully created vector store for 10. legislature\n",
      "Sucessfully created vector store for 11. legislature\n",
      "Sucessfully created vector store for 12. legislature\n",
      "Sucessfully created vector store for 13. legislature\n",
      "Sucessfully created vector store for 14. legislature\n",
      "Sucessfully created vector store for 15. legislature\n",
      "Sucessfully created vector store for 16. legislature\n",
      "Sucessfully created vector store for 17. legislature\n",
      "Sucessfully created vector store for 18. legislature\n",
      "Sucessfully created vector store for 19. legislature\n",
      "Sucessfully created vector store for 20. legislature\n"
     ]
    }
   ],
   "source": [
    "# Define starting dates of legislature periods\n",
    "dates = [\"1953-10-06\", \"1957-10-16\", \"1961-10-17\", \"1965-10-19\", \"1969-10-20\", \"1972-12-13\", \"1976-12-14\", \"1980-11-04\", \"1983-03-29\", \"1987-02-18\",\"1990-12-20\", \"1994-11-10\", \"1998-10-26\", \"2002-10-17\", \"2005-10-18\", \"2009-10-27\", \"2013-10-22\",\"2017-10-24\",\"2021-10-26\", None]\n",
    "# Load sentence transformer \n",
    "embeddings = HuggingFaceEmbeddings(model_name=\"paraphrase-multilingual-MiniLM-L12-v2\")\n",
    "\n",
    "# Create vector store for all speaches\n",
    "# Split text into documents for vectorstore\n",
    "documents = split_documents(df)\n",
    "# Create and save faiss vectorstorage\n",
    "index_name = 'speeches_1949_09_12'\n",
    "db = FAISS.from_documents(documents, embeddings)\n",
    "db.save_local(folder_path=\"FAISS\", index_name=index_name)\n",
    "print(\"Sucessfully created vector store for all legislature\")\n",
    "\n",
    "# Create vector store for each legislature\n",
    "# loop parameters\n",
    "period = 1\n",
    "previous_date = None\n",
    "\n",
    "# Iterate over all date to split by legislature getting vector stores for each period\n",
    "for date in dates:\n",
    "    if previous_date is None:\n",
    "        legislature_df = df.loc[df['date'] < datetime.strptime(date, \"%Y-%m-%d\")]\n",
    "    elif date is None:\n",
    "        legislature_df = df.loc[df['date'] >= datetime.strptime(previous_date, \"%Y-%m-%d\")]\n",
    "    else:\n",
    "        legislature_df = df.loc[(df['date'] >= datetime.strptime(previous_date, \"%Y-%m-%d\")) & (df['date'] < datetime.strptime(date, \"%Y-%m-%d\"))]\n",
    "\n",
    "   \n",
    "    # Split text into documents for vectorstore\n",
    "    documents = split_documents(legislature_df)\n",
    "\n",
    "    # Create and save faiss vectorstorage\n",
    "    index_name = f'{period}_legislature'\n",
    "    db = FAISS.from_documents(documents, embeddings)\n",
    "    db.save_local(folder_path=\"FAISS\", index_name=index_name)\n",
    "    print(f\"Sucessfully created vector store for {period}. legislature\")\n",
    "\n",
    "    # Change loop parameters for next iteration\n",
    "    period += 1\n",
    "    previous_date = date\n",
    "\n",
    "\n",
    "    \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This data has been uploaded to: https://huggingface.co/datasets/TomData/test"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}