Tomtom84's picture
Update app.py
e3958ab verified
raw
history blame
6.05 kB
# app.py ──────────────────────────────────────────────────────────────
import os, json, torch, asyncio
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor
from snac import SNAC
# 0) Login + Device ---------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cuda.enable_flash_sdp(False) # PyTorch‑2.2‑Bug
# 1) Konstanten -------------------------------------------------------
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
CHUNK_TOKENS = 50
START_TOKEN = 128259
NEW_BLOCK = 128257
EOS_TOKEN = 128258
AUDIO_BASE = 128266
AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096)
# 2) Logit‑Mask (NEW_BLOCK + Audio; EOS erst nach 1. Block) ----------
class AudioMask(LogitsProcessor):
def __init__(self, audio_ids: torch.Tensor):
super().__init__()
self.allow = torch.cat([
torch.tensor([NEW_BLOCK], device=audio_ids.device),
audio_ids
])
self.eos = torch.tensor([EOS_TOKEN], device=audio_ids.device)
self.sent_blocks = 0
def __call__(self, input_ids, logits):
allowed = self.allow
if self.sent_blocks: # ab 1. Block EOS zulassen
allowed = torch.cat([allowed, self.eos])
mask = logits.new_full(logits.shape, float("-inf"))
mask[:, allowed] = 0
return logits + mask
# 3) FastAPI Grundgerüst ---------------------------------------------
app = FastAPI()
@app.get("/")
def hello():
return {"status": "ok"}
@app.on_event("startup")
def load_models():
global tok, model, snac, masker
print("⏳ Lade Modelle …", flush=True)
tok = AutoTokenizer.from_pretrained(REPO)
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
model = AutoModelForCausalLM.from_pretrained(
REPO,
device_map={"": 0} if device == "cuda" else None,
torch_dtype=torch.bfloat16 if device == "cuda" else None,
low_cpu_mem_usage=True,
)
model.config.pad_token_id = model.config.eos_token_id
masker = AudioMask(AUDIO_IDS.to(device))
print("✅ Modelle geladen", flush=True)
# 4) Helper -----------------------------------------------------------
def build_prompt(text: str, voice: str):
prompt_ids = tok(f"{voice}: {text}", return_tensors="pt").input_ids.to(device)
ids = torch.cat([torch.tensor([[START_TOKEN]], device=device),
prompt_ids,
torch.tensor([[128009, 128260]], device=device)], 1)
attn = torch.ones_like(ids)
return ids, attn
def decode_block(block7: list[int]) -> bytes:
l1,l2,l3=[],[],[]
l1.append(block7[0])
l2.append(block7[1]-4096)
l3 += [block7[2]-8192, block7[3]-12288]
l2.append(block7[4]-16384)
l3 += [block7[5]-20480, block7[6]-24576]
with torch.no_grad():
codes = [torch.tensor(x, device=device).unsqueeze(0)
for x in (l1,l2,l3)]
audio = snac.decode(codes).squeeze().detach().cpu().numpy()
return (audio*32767).astype("int16").tobytes()
# 5) WebSocket‑Endpoint ----------------------------------------------
@app.websocket("/ws/tts")
async def tts(ws: WebSocket):
await ws.accept()
try:
req = json.loads(await ws.receive_text())
text = req.get("text", "")
voice = req.get("voice", "Jakob")
ids, attn = build_prompt(text, voice)
past = None
offset_len = ids.size(1) # wie viele Tokens existieren schon
last_tok = None
buf = []
while True:
# --- Mini‑Generate -------------------------------------------
gen = model.generate(
input_ids = ids if past is None else torch.tensor([[last_tok]], device=device),
attention_mask = attn if past is None else None,
past_key_values = past,
max_new_tokens = CHUNK_TOKENS,
logits_processor= [masker],
do_sample=True, temperature=0.7, top_p=0.95,
use_cache=True
)
# ----- neue Tokens heraus schneiden --------------------------
new = gen[0, offset_len:].tolist()
if not new: # nichts -> fertig
break
offset_len += len(new)
# ----- weiter mit Cache (letzte PKV steht im Modell) ---------
past = model._past_key_values
last_tok = new[-1]
print("new tokens:", new[:25], flush=True)
# ----- Token‑Handling ----------------------------------------
for t in new:
if t == EOS_TOKEN:
raise StopIteration
if t == NEW_BLOCK:
buf.clear()
continue
buf.append(t - AUDIO_BASE)
if len(buf) == 7:
await ws.send_bytes(decode_block(buf))
buf.clear()
masker.sent_blocks = 1 # ab jetzt EOS zulässig
except (StopIteration, WebSocketDisconnect):
pass
except Exception as e:
print("❌ WS‑Error:", e, flush=True)
if ws.client_state.name != "DISCONNECTED":
await ws.close(code=1011)
finally:
if ws.client_state.name != "DISCONNECTED":
try:
await ws.close()
except RuntimeError:
pass
# 6) Dev‑Start --------------------------------------------------------
if __name__ == "__main__":
import uvicorn, sys
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")