Tomtom84 commited on
Commit
f749a75
·
verified ·
1 Parent(s): 63ebe58

Create decoder.py

Browse files
Files changed (1) hide show
  1. orpheus-tts/decoder.py +141 -0
orpheus-tts/decoder.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from snac import SNAC
2
+ import numpy as np
3
+ import torch
4
+ import asyncio
5
+ import threading
6
+ import queue
7
+ import os
8
+
9
+
10
+ model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
11
+
12
+ snac_device = os.environ.get("SNAC_DEVICE", "cuda" if torch.cuda.is_available() else "cpu")
13
+ model = model.to(snac_device)
14
+
15
+
16
+ def convert_to_audio(multiframe, count):
17
+ frames = []
18
+ if len(multiframe) < 7:
19
+ return
20
+
21
+ codes_0 = torch.tensor([], device=snac_device, dtype=torch.int32)
22
+ codes_1 = torch.tensor([], device=snac_device, dtype=torch.int32)
23
+ codes_2 = torch.tensor([], device=snac_device, dtype=torch.int32)
24
+
25
+ num_frames = len(multiframe) // 7
26
+ frame = multiframe[:num_frames*7]
27
+
28
+ for j in range(num_frames):
29
+ i = 7*j
30
+ if codes_0.shape[0] == 0:
31
+ codes_0 = torch.tensor([frame[i]], device=snac_device, dtype=torch.int32)
32
+ else:
33
+ codes_0 = torch.cat([codes_0, torch.tensor([frame[i]], device=snac_device, dtype=torch.int32)])
34
+
35
+ if codes_1.shape[0] == 0:
36
+
37
+ codes_1 = torch.tensor([frame[i+1]], device=snac_device, dtype=torch.int32)
38
+ codes_1 = torch.cat([codes_1, torch.tensor([frame[i+4]], device=snac_device, dtype=torch.int32)])
39
+ else:
40
+ codes_1 = torch.cat([codes_1, torch.tensor([frame[i+1]], device=snac_device, dtype=torch.int32)])
41
+ codes_1 = torch.cat([codes_1, torch.tensor([frame[i+4]], device=snac_device, dtype=torch.int32)])
42
+
43
+ if codes_2.shape[0] == 0:
44
+ codes_2 = torch.tensor([frame[i+2]], device=snac_device, dtype=torch.int32)
45
+ codes_2 = torch.cat([codes_2, torch.tensor([frame[i+3]], device=snac_device, dtype=torch.int32)])
46
+ codes_2 = torch.cat([codes_2, torch.tensor([frame[i+5]], device=snac_device, dtype=torch.int32)])
47
+ codes_2 = torch.cat([codes_2, torch.tensor([frame[i+6]], device=snac_device, dtype=torch.int32)])
48
+ else:
49
+ codes_2 = torch.cat([codes_2, torch.tensor([frame[i+2]], device=snac_device, dtype=torch.int32)])
50
+ codes_2 = torch.cat([codes_2, torch.tensor([frame[i+3]], device=snac_device, dtype=torch.int32)])
51
+ codes_2 = torch.cat([codes_2, torch.tensor([frame[i+5]], device=snac_device, dtype=torch.int32)])
52
+ codes_2 = torch.cat([codes_2, torch.tensor([frame[i+6]], device=snac_device, dtype=torch.int32)])
53
+
54
+ codes = [codes_0.unsqueeze(0), codes_1.unsqueeze(0), codes_2.unsqueeze(0)]
55
+ # check that all tokens are between 0 and 4096 otherwise return *
56
+ if torch.any(codes[0] < 0) or torch.any(codes[0] > 4096) or torch.any(codes[1] < 0) or torch.any(codes[1] > 4096) or torch.any(codes[2] < 0) or torch.any(codes[2] > 4096):
57
+ return
58
+
59
+ with torch.inference_mode():
60
+ audio_hat = model.decode(codes)
61
+
62
+ audio_slice = audio_hat[:, :, 2048:4096]
63
+ detached_audio = audio_slice.detach().cpu()
64
+ audio_np = detached_audio.numpy()
65
+ audio_int16 = (audio_np * 32767).astype(np.int16)
66
+ audio_bytes = audio_int16.tobytes()
67
+ return audio_bytes
68
+
69
+ def turn_token_into_id(token_string, index):
70
+ # Strip whitespace
71
+ token_string = token_string.strip()
72
+
73
+ # Find the last token in the string
74
+ last_token_start = token_string.rfind("<custom_token_")
75
+
76
+ if last_token_start == -1:
77
+ print("No token found in the string")
78
+ return None
79
+
80
+ # Extract the last token
81
+ last_token = token_string[last_token_start:]
82
+
83
+ # Process the last token
84
+ if last_token.startswith("<custom_token_") and last_token.endswith(">"):
85
+ try:
86
+ number_str = last_token[14:-1]
87
+ return int(number_str) - 10 - ((index % 7) * 4096)
88
+ except ValueError:
89
+ return None
90
+ else:
91
+ return None
92
+
93
+
94
+ async def tokens_decoder(token_gen):
95
+ buffer = []
96
+ count = 0
97
+ async for token_sim in token_gen:
98
+ token = turn_token_into_id(token_sim, count)
99
+ if token is None:
100
+ pass
101
+ else:
102
+ if token > 0:
103
+ buffer.append(token)
104
+ count += 1
105
+
106
+ if count % 7 == 0 and count > 27:
107
+ buffer_to_proc = buffer[-28:]
108
+ audio_samples = convert_to_audio(buffer_to_proc, count)
109
+ if audio_samples is not None:
110
+ yield audio_samples
111
+
112
+
113
+ # ------------------ Synchronous Tokens Decoder Wrapper ------------------ #
114
+ def tokens_decoder_sync(syn_token_gen):
115
+
116
+ audio_queue = queue.Queue()
117
+
118
+ # Convert the synchronous token generator into an async generator.
119
+ async def async_token_gen():
120
+ for token in syn_token_gen:
121
+ yield token
122
+
123
+ async def async_producer():
124
+ # tokens_decoder.tokens_decoder is assumed to be an async generator that processes tokens.
125
+ async for audio_chunk in tokens_decoder(async_token_gen()):
126
+ audio_queue.put(audio_chunk)
127
+ audio_queue.put(None) # Sentinel
128
+
129
+ def run_async():
130
+ asyncio.run(async_producer())
131
+
132
+ thread = threading.Thread(target=run_async)
133
+ thread.start()
134
+
135
+ while True:
136
+ audio = audio_queue.get()
137
+ if audio is None:
138
+ break
139
+ yield audio
140
+
141
+ thread.join()