Tonic's picture
adds harmony in template format
ba3e817
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import gradio as gr
import spaces
import re
from peft import PeftModel
# Load the base model
try:
base_model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype="auto",
device_map="auto",
attn_implementation="kernels-community/vllm-flash-attention3"
)
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
# Load the LoRA adapter
try:
model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner")
print("✅ LoRA model loaded successfully!")
except Exception as lora_error:
print(f"⚠️ LoRA adapter failed to load: {lora_error}")
print("🔄 Falling back to base model...")
model = base_model
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
new_message = {"role": "user", "content": input_data}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
# Use the model's chat template to format the conversation properly
# This is crucial for GPT-OSS-20B which expects the Harmony format
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Alternative streaming approach with manual chunking
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate in smaller chunks for better streaming
chunk_size = 50 # Generate 50 tokens at a time
full_response = ""
with torch.no_grad():
for i in range(0, max_new_tokens, chunk_size):
current_max_tokens = min(chunk_size, max_new_tokens - i)
outputs = model.generate(
**inputs,
max_new_tokens=current_max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
use_cache=True
)
# Decode the new tokens
new_tokens = outputs[0][inputs["input_ids"].shape[1]:]
new_text = tokenizer.decode(new_tokens, skip_special_tokens=True)
if new_text:
full_response += new_text
# Process for thinking/final split
thinking = ""
final = ""
started_final = False
if "assistantfinal" in full_response.lower():
split_parts = re.split(r'assistantfinal', full_response, maxsplit=1)
thinking = split_parts[0]
final = split_parts[1] if len(split_parts) > 1 else ""
started_final = True
else:
thinking = full_response
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
clean_final = final.strip()
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
yield formatted
# Update inputs for next iteration
inputs = {"input_ids": outputs}
# Check for end of generation
if outputs[0][-1].item() == tokenizer.eos_token_id:
break
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "Explain Newton laws clearly and concisely"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "What are the benefits of open weight AI models"}],
],
cache_examples=False,
type="messages",
description="""
# 🙋🏻‍♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo !
Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high.
""",
fill_height=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True)