Tonic's picture
adds harmony in template format
ba3e817
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import gradio as gr
import spaces
import re
from peft import PeftModel
# Load the base model
try:
base_model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype="auto",
device_map="auto",
attn_implementation="kernels-community/vllm-flash-attention3"
)
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
# Load the LoRA adapter
try:
model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner")
print("✅ LoRA model loaded successfully!")
except Exception as lora_error:
print(f"⚠️ LoRA adapter failed to load: {lora_error}")
print("🔄 Falling back to base model...")
model = base_model
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
def create_harmony_prompt(messages, reasoning_level="medium"):
"""
Create a proper Harmony format prompt for GPT-OSS-20B
Based on the Harmony format from https://github.com/openai/harmony
"""
# Start with system message in Harmony format
system_content = f"""You are ChatGPT, a large language model trained by OpenAI.
Knowledge cutoff: 2024-06
Current date: 2025-01-28
Reasoning: {reasoning_level}
# Valid channels: analysis, commentary, final. Channel must be included for every message."""
# Build the prompt in Harmony format
prompt_parts = []
# Add system message
prompt_parts.append(f"<|start|>system<|message|>{system_content}<|end|>")
# Add conversation messages
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
# Skip system messages as we already added the main one
continue
elif role == "user":
prompt_parts.append(f"<|start|>user<|message|>{content}<|end|>")
elif role == "assistant":
prompt_parts.append(f"<|start|>assistant<|message|>{content}<|end|>")
# Add the generation prompt
prompt_parts.append("<|start|>assistant")
return "\n".join(prompt_parts)
@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
new_message = {"role": "user", "content": input_data}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
# Extract reasoning level from system prompt
reasoning_level = "medium"
if "reasoning:" in system_prompt.lower():
if "high" in system_prompt.lower():
reasoning_level = "high"
elif "low" in system_prompt.lower():
reasoning_level = "low"
# Create Harmony format prompt
prompt = create_harmony_prompt(messages, reasoning_level)
# Create streamer for proper streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
"use_cache": True
}
# Tokenize input using the Harmony format
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs})
thread.start()
# Stream the response and parse Harmony format
current_channel = None
current_content = ""
thinking = ""
final = ""
for chunk in streamer:
current_content += chunk
# Parse Harmony format channels
# Look for channel markers like <|channel|>analysis, <|channel|>commentary, <|channel|>final
if "<|channel|>" in current_content:
# Extract channel and content
parts = current_content.split("<|channel|>")
if len(parts) >= 2:
channel_part = parts[1]
if channel_part.startswith("analysis"):
current_channel = "analysis"
content_start = channel_part.find("<|message|>")
if content_start != -1:
content = channel_part[content_start + 10:] # length of "<|message|>"
thinking += content
elif channel_part.startswith("commentary"):
current_channel = "commentary"
content_start = channel_part.find("<|message|>")
if content_start != -1:
content = channel_part[content_start + 10:]
thinking += content
elif channel_part.startswith("final"):
current_channel = "final"
content_start = channel_part.find("<|message|>")
if content_start != -1:
content = channel_part[content_start + 10:]
final += content
# Clean up the content for display
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
clean_final = final.strip()
# Format for display
if clean_thinking or clean_final:
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
yield formatted
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "Explain Newton laws clearly and concisely"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "What are the benefits of open weight AI models"}],
],
cache_examples=False,
type="messages",
description="""
# 🙋🏻‍♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo !
Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high.
This version uses the proper Harmony format for better generation quality.
""",
fill_height=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True)