File size: 4,865 Bytes
d3a15f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import h5py
import numpy as np
import gradio as gr
import plotly.graph_objects as go
from railnet_model import RailNetSystem

from huggingface_hub import hf_hub_download

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

model = RailNetSystem.from_pretrained("Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image").cuda()

model.load_weights(from_hub=True, repo_id="Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image")

def render_plotly_volume(pred, x_eye=1.25, y_eye=1.25, z_eye=1.25):
    downsample_factor = 2
    pred_ds = pred[::downsample_factor, ::downsample_factor, ::downsample_factor]

    fig = go.Figure(data=go.Volume(
        x=np.repeat(np.arange(pred_ds.shape[0]), pred_ds.shape[1] * pred_ds.shape[2]),
        y=np.tile(np.repeat(np.arange(pred_ds.shape[1]), pred_ds.shape[2]), pred_ds.shape[0]),
        z=np.tile(np.arange(pred_ds.shape[2]), pred_ds.shape[0] * pred_ds.shape[1]),
        value=pred_ds.flatten(),
        isomin=0.5,
        isomax=1.0,
        opacity=0.1,
        surface_count=1,
        colorscale=[[0, 'rgb(255, 0, 0)'], [1, 'rgb(255, 0, 0)']],
        showscale=False
    ))

    fig.update_layout(
        scene=dict(
            xaxis=dict(visible=False),
            yaxis=dict(visible=False),
            zaxis=dict(visible=False),
            camera=dict(eye=dict(x=x_eye, y=y_eye, z=z_eye))
        ),
        margin=dict(l=0, r=0, b=0, t=0)
    )
    return fig

def handle_example(filename):
    repo_id = "Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image"
    h5_path = hf_hub_download(repo_id=repo_id, filename=f"example_input_file/{filename}")
   
    with h5py.File(h5_path, "r") as f:
        image = f["image"][:]
        label = f["label"][:]
    
    name = filename.replace(".h5", "")
    pred, dice, jc, hd, asd = model(image, label, "./output", name)
    
    fig = render_plotly_volume(pred)
    
    img_path = f"./output/{name}_img.nii.gz"
    pred_path = f"./output/{name}_pred.nii.gz"
    
    metrics = f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}"
    
    return metrics, pred, fig, img_path, pred_path

def clear_all():
    return "", None, None, None, None

with gr.Blocks() as demo:
    gr.HTML("<div style='text-align: center; font-size: 22px; font-weight: bold;'>🦷 Demo of RailNet: A CBCT Tooth Segmentation System</div>")
    gr.HTML("<div style='text-align: center; font-size: 15px'>✅ Steps: Select a CBCT example file (.h5)  →  Automatic inference and metrics display  →  View 3D segmentation result (Mouse drag and scroll wheel zooming)</div>")

    gr.HTML("""

    <style>

    .code-style {

        font-family: monospace;

        background-color: #2f363d;

        color: #ffffff;

        padding: 2px 6px;

        border-radius: 4px;

        font-size: 90%;

    }

    </style>



    <div style='font-size: 15px; font-weight: bold;'>

        📂 Step 1: Select a <span class='code-style'>.h5</span> example file from the <span class='code-style'>example_input_file</span> folder in our

        <a href='https://huggingface.co/Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image' target='_blank' style='text-decoration: none; color: #1f6feb; font-weight: bold;'>

        Hugging Face model

        </a> repository. 

    </div>

    """)

    example_files = ["CBCT_01.h5", "CBCT_02.h5", "CBCT_03.h5", "CBCT_04.h5"] 
    dropdown = gr.Dropdown(choices=example_files, label="Example File", value=example_files[0])


    with gr.Row():
        clear_btn = gr.Button("清除", variant="secondary")
        submit_btn = gr.Button("提交", variant="primary")

    gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📊 Step 2: Metrics (Dice, Jaccard, 95HD, ASD)</div>")
    result_text = gr.Textbox()
    hidden_pred = gr.State(value=None) 

    gr.HTML("<div style='font-size: 15px; font-weight: bold;'>👁️ Step 3: 3D Visualisation</div>")
    plot_output = gr.Plot()

    gr.HTML("<div style='font-size: 15px; font-weight: bold;'>⬇️ Step 4: Download <span class='code-style'>NIfTI</span> files for accurate 1:1 visualization using <span class='code-style'>ITK-SNAP</span> software</div>")
    with gr.Row():
        hidden_img_file = gr.File(label="Download Original Image", interactive=False)
        hidden_pred_file = gr.File(label="Download Segmentation Result", interactive=False)

    submit_btn.click(
        fn=handle_example,
        inputs=[dropdown],
        outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
    )

    clear_btn.click(
        fn=clear_all,
        inputs=[],
        outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
    )

demo.launch()