Upload 2 files
Browse files- app.py +136 -0
- railnet_model.py +948 -0
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import h5py
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from railnet_model import RailNetSystem
|
7 |
+
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
11 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
12 |
+
|
13 |
+
model = RailNetSystem.from_pretrained("Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image").cuda()
|
14 |
+
|
15 |
+
model.load_weights(from_hub=True, repo_id="Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image")
|
16 |
+
|
17 |
+
def render_plotly_volume(pred, x_eye=1.25, y_eye=1.25, z_eye=1.25):
|
18 |
+
downsample_factor = 2
|
19 |
+
pred_ds = pred[::downsample_factor, ::downsample_factor, ::downsample_factor]
|
20 |
+
|
21 |
+
fig = go.Figure(data=go.Volume(
|
22 |
+
x=np.repeat(np.arange(pred_ds.shape[0]), pred_ds.shape[1] * pred_ds.shape[2]),
|
23 |
+
y=np.tile(np.repeat(np.arange(pred_ds.shape[1]), pred_ds.shape[2]), pred_ds.shape[0]),
|
24 |
+
z=np.tile(np.arange(pred_ds.shape[2]), pred_ds.shape[0] * pred_ds.shape[1]),
|
25 |
+
value=pred_ds.flatten(),
|
26 |
+
isomin=0.5,
|
27 |
+
isomax=1.0,
|
28 |
+
opacity=0.1,
|
29 |
+
surface_count=1,
|
30 |
+
colorscale=[[0, 'rgb(255, 0, 0)'], [1, 'rgb(255, 0, 0)']],
|
31 |
+
showscale=False
|
32 |
+
))
|
33 |
+
|
34 |
+
fig.update_layout(
|
35 |
+
scene=dict(
|
36 |
+
xaxis=dict(visible=False),
|
37 |
+
yaxis=dict(visible=False),
|
38 |
+
zaxis=dict(visible=False),
|
39 |
+
camera=dict(eye=dict(x=x_eye, y=y_eye, z=z_eye))
|
40 |
+
),
|
41 |
+
margin=dict(l=0, r=0, b=0, t=0)
|
42 |
+
)
|
43 |
+
return fig
|
44 |
+
|
45 |
+
def handle_example(filename):
|
46 |
+
repo_id = "Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image"
|
47 |
+
h5_path = hf_hub_download(repo_id=repo_id, filename=f"example_input_file/{filename}")
|
48 |
+
|
49 |
+
with h5py.File(h5_path, "r") as f:
|
50 |
+
image = f["image"][:]
|
51 |
+
label = f["label"][:]
|
52 |
+
|
53 |
+
name = filename.replace(".h5", "")
|
54 |
+
pred, dice, jc, hd, asd = model(image, label, "./output", name)
|
55 |
+
|
56 |
+
fig = render_plotly_volume(pred)
|
57 |
+
|
58 |
+
img_path = f"./output/{name}_img.nii.gz"
|
59 |
+
pred_path = f"./output/{name}_pred.nii.gz"
|
60 |
+
|
61 |
+
metrics = f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}"
|
62 |
+
|
63 |
+
return metrics, pred, fig, img_path, pred_path
|
64 |
+
|
65 |
+
def clear_all():
|
66 |
+
return "", None, None, None, None
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.HTML("<div style='text-align: center; font-size: 22px; font-weight: bold;'>🦷 Demo of RailNet: A CBCT Tooth Segmentation System</div>")
|
70 |
+
gr.HTML("<div style='text-align: center; font-size: 15px'>✅ Steps: Select a CBCT example file (.h5) → Automatic inference and metrics display → View 3D segmentation result (Mouse drag and scroll wheel zooming)</div>")
|
71 |
+
|
72 |
+
gr.HTML("""
|
73 |
+
<style>
|
74 |
+
.code-style {
|
75 |
+
font-family: monospace;
|
76 |
+
background-color: #2f363d;
|
77 |
+
color: #ffffff;
|
78 |
+
padding: 2px 6px;
|
79 |
+
border-radius: 4px;
|
80 |
+
font-size: 90%;
|
81 |
+
}
|
82 |
+
</style>
|
83 |
+
|
84 |
+
<div style='font-size: 15px; font-weight: bold;'>
|
85 |
+
📂 Step 1: Select a <span class='code-style'>.h5</span> example file from the <span class='code-style'>example_input_file</span> folder in our
|
86 |
+
<a href='https://huggingface.co/Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image' target='_blank' style='text-decoration: none; color: #1f6feb; font-weight: bold;'>
|
87 |
+
Hugging Face model
|
88 |
+
</a> repository.
|
89 |
+
</div>
|
90 |
+
""")
|
91 |
+
|
92 |
+
example_files = ["CBCT_01.h5", "CBCT_02.h5", "CBCT_03.h5", "CBCT_04.h5"]
|
93 |
+
dropdown = gr.Dropdown(choices=example_files, label="Example File", value=example_files[0])
|
94 |
+
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
clear_btn = gr.Button("清除", variant="secondary")
|
98 |
+
submit_btn = gr.Button("提交", variant="primary")
|
99 |
+
|
100 |
+
gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📊 Step 2: Metrics (Dice, Jaccard, 95HD, ASD)</div>")
|
101 |
+
result_text = gr.Textbox()
|
102 |
+
hidden_pred = gr.State(value=None)
|
103 |
+
|
104 |
+
gr.HTML("<div style='font-size: 15px; font-weight: bold;'>👁️ Step 3: 3D Visualisation</div>")
|
105 |
+
plot_output = gr.Plot()
|
106 |
+
|
107 |
+
# hidden_img_file = gr.File(visible=False)
|
108 |
+
# hidden_pred_file = gr.File(visible=False)
|
109 |
+
|
110 |
+
gr.HTML("<div style='font-size: 15px; font-weight: bold;'>⬇️ Step 4: Download <span class='code-style'>NIfTI</span> files for accurate 1:1 visualization using <span class='code-style'>ITK-SNAP</span> software</div>")
|
111 |
+
with gr.Row():
|
112 |
+
hidden_img_file = gr.File(label="Download Original Image", interactive=False)
|
113 |
+
hidden_pred_file = gr.File(label="Download Segmentation Result", interactive=False)
|
114 |
+
|
115 |
+
submit_btn.click(
|
116 |
+
fn=handle_example,
|
117 |
+
inputs=[dropdown],
|
118 |
+
outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
|
119 |
+
)
|
120 |
+
|
121 |
+
# def update_view(pred, x_eye, y_eye, z_eye):
|
122 |
+
# if pred is None:
|
123 |
+
# return gr.update()
|
124 |
+
# return render_plotly_volume(pred, x_eye, y_eye, z_eye)
|
125 |
+
|
126 |
+
clear_btn.click(
|
127 |
+
fn=clear_all,
|
128 |
+
inputs=[],
|
129 |
+
outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
|
130 |
+
)
|
131 |
+
|
132 |
+
# download_img_btn.click(fn=lambda f: f, inputs=[hidden_img_file], outputs=[hidden_img_file])
|
133 |
+
# download_pred_btn.click(fn=lambda f: f, inputs=[hidden_pred_file], outputs=[hidden_pred_file])
|
134 |
+
|
135 |
+
demo.launch()
|
136 |
+
|
railnet_model.py
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
3 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from huggingface_hub import PyTorchModelHubMixin
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import nibabel as nib
|
12 |
+
from skimage import morphology
|
13 |
+
|
14 |
+
import math
|
15 |
+
from scipy import ndimage
|
16 |
+
from medpy import metric
|
17 |
+
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
|
20 |
+
|
21 |
+
class ConvBlock(nn.Module):
|
22 |
+
def __init__(self, n_stages, n_filters_in, n_filters_out, normalization='none'):
|
23 |
+
super(ConvBlock, self).__init__()
|
24 |
+
|
25 |
+
ops = []
|
26 |
+
for i in range(n_stages):
|
27 |
+
if i == 0:
|
28 |
+
input_channel = n_filters_in
|
29 |
+
else:
|
30 |
+
input_channel = n_filters_out
|
31 |
+
|
32 |
+
ops.append(nn.Conv3d(input_channel, n_filters_out, 3, padding=1))
|
33 |
+
if normalization == 'batchnorm':
|
34 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
35 |
+
elif normalization == 'groupnorm':
|
36 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
37 |
+
elif normalization == 'instancenorm':
|
38 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
39 |
+
elif normalization != 'none':
|
40 |
+
assert False
|
41 |
+
ops.append(nn.ReLU(inplace=True))
|
42 |
+
|
43 |
+
self.conv = nn.Sequential(*ops)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
x = self.conv(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class DownsamplingConvBlock(nn.Module):
|
51 |
+
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
52 |
+
super(DownsamplingConvBlock, self).__init__()
|
53 |
+
|
54 |
+
ops = []
|
55 |
+
if normalization != 'none':
|
56 |
+
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
57 |
+
if normalization == 'batchnorm':
|
58 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
59 |
+
elif normalization == 'groupnorm':
|
60 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
61 |
+
elif normalization == 'instancenorm':
|
62 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
63 |
+
else:
|
64 |
+
assert False
|
65 |
+
else:
|
66 |
+
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
67 |
+
|
68 |
+
ops.append(nn.ReLU(inplace=True))
|
69 |
+
|
70 |
+
self.conv = nn.Sequential(*ops)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = self.conv(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class UpsamplingDeconvBlock(nn.Module):
|
78 |
+
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
79 |
+
super(UpsamplingDeconvBlock, self).__init__()
|
80 |
+
|
81 |
+
ops = []
|
82 |
+
if normalization != 'none':
|
83 |
+
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
84 |
+
if normalization == 'batchnorm':
|
85 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
86 |
+
elif normalization == 'groupnorm':
|
87 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
88 |
+
elif normalization == 'instancenorm':
|
89 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
90 |
+
else:
|
91 |
+
assert False
|
92 |
+
else:
|
93 |
+
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
94 |
+
|
95 |
+
ops.append(nn.ReLU(inplace=True))
|
96 |
+
|
97 |
+
self.conv = nn.Sequential(*ops)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = self.conv(x)
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
class Upsampling(nn.Module):
|
105 |
+
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
106 |
+
super(Upsampling, self).__init__()
|
107 |
+
|
108 |
+
ops = []
|
109 |
+
ops.append(nn.Upsample(scale_factor=stride, mode='trilinear', align_corners=False))
|
110 |
+
ops.append(nn.Conv3d(n_filters_in, n_filters_out, kernel_size=3, padding=1))
|
111 |
+
if normalization == 'batchnorm':
|
112 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
113 |
+
elif normalization == 'groupnorm':
|
114 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
115 |
+
elif normalization == 'instancenorm':
|
116 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
117 |
+
elif normalization != 'none':
|
118 |
+
assert False
|
119 |
+
ops.append(nn.ReLU(inplace=True))
|
120 |
+
|
121 |
+
self.conv = nn.Sequential(*ops)
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
x = self.conv(x)
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
class ConnectNet(nn.Module):
|
129 |
+
def __init__(self, in_channels, out_channels, input_size):
|
130 |
+
super(ConnectNet, self).__init__()
|
131 |
+
self.encoder = nn.Sequential(
|
132 |
+
nn.Conv3d(in_channels, 128, kernel_size=3, stride=1, padding=1),
|
133 |
+
nn.ReLU(),
|
134 |
+
nn.MaxPool3d(kernel_size=2, stride=2),
|
135 |
+
nn.Conv3d(128, 64, kernel_size=3, stride=1, padding=1),
|
136 |
+
nn.ReLU(),
|
137 |
+
nn.MaxPool3d(kernel_size=2, stride=2)
|
138 |
+
)
|
139 |
+
|
140 |
+
self.decoder = nn.Sequential(
|
141 |
+
nn.ConvTranspose3d(64, 128, kernel_size=2, stride=2),
|
142 |
+
nn.ReLU(),
|
143 |
+
nn.ConvTranspose3d(128, out_channels, kernel_size=2, stride=2),
|
144 |
+
nn.Sigmoid()
|
145 |
+
)
|
146 |
+
|
147 |
+
def forward(self, x):
|
148 |
+
encoded = self.encoder(x)
|
149 |
+
decoded = self.decoder(encoded)
|
150 |
+
return decoded
|
151 |
+
|
152 |
+
|
153 |
+
class VNet(nn.Module):
|
154 |
+
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False):
|
155 |
+
super(VNet, self).__init__()
|
156 |
+
self.has_dropout = has_dropout
|
157 |
+
|
158 |
+
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
159 |
+
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
160 |
+
|
161 |
+
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
162 |
+
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
163 |
+
|
164 |
+
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
165 |
+
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
166 |
+
|
167 |
+
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
168 |
+
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
169 |
+
|
170 |
+
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
171 |
+
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
172 |
+
|
173 |
+
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
174 |
+
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
175 |
+
|
176 |
+
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
177 |
+
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
178 |
+
|
179 |
+
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
180 |
+
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
181 |
+
|
182 |
+
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
183 |
+
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
184 |
+
|
185 |
+
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
|
186 |
+
|
187 |
+
self.__init_weight()
|
188 |
+
|
189 |
+
def encoder(self, input):
|
190 |
+
x1 = self.block_one(input)
|
191 |
+
x1_dw = self.block_one_dw(x1)
|
192 |
+
|
193 |
+
x2 = self.block_two(x1_dw)
|
194 |
+
x2_dw = self.block_two_dw(x2)
|
195 |
+
|
196 |
+
x3 = self.block_three(x2_dw)
|
197 |
+
x3_dw = self.block_three_dw(x3)
|
198 |
+
|
199 |
+
x4 = self.block_four(x3_dw)
|
200 |
+
x4_dw = self.block_four_dw(x4)
|
201 |
+
|
202 |
+
x5 = self.block_five(x4_dw)
|
203 |
+
if self.has_dropout:
|
204 |
+
x5 = self.dropout(x5)
|
205 |
+
|
206 |
+
res = [x1, x2, x3, x4, x5]
|
207 |
+
|
208 |
+
return res
|
209 |
+
|
210 |
+
def decoder(self, features):
|
211 |
+
x1 = features[0]
|
212 |
+
x2 = features[1]
|
213 |
+
x3 = features[2]
|
214 |
+
x4 = features[3]
|
215 |
+
x5 = features[4]
|
216 |
+
|
217 |
+
x5_up = self.block_five_up(x5)
|
218 |
+
x5_up = x5_up + x4
|
219 |
+
|
220 |
+
x6 = self.block_six(x5_up)
|
221 |
+
x6_up = self.block_six_up(x6)
|
222 |
+
x6_up = x6_up + x3
|
223 |
+
|
224 |
+
x7 = self.block_seven(x6_up)
|
225 |
+
x7_up = self.block_seven_up(x7)
|
226 |
+
x7_up = x7_up + x2
|
227 |
+
|
228 |
+
x8 = self.block_eight(x7_up)
|
229 |
+
x8_up = self.block_eight_up(x8)
|
230 |
+
x8_up = x8_up + x1
|
231 |
+
x9 = self.block_nine(x8_up)
|
232 |
+
if self.has_dropout:
|
233 |
+
x9 = self.dropout(x9)
|
234 |
+
out = self.out_conv(x9)
|
235 |
+
return out
|
236 |
+
|
237 |
+
def forward(self, input, turnoff_drop=False):
|
238 |
+
if turnoff_drop:
|
239 |
+
has_dropout = self.has_dropout
|
240 |
+
self.has_dropout = False
|
241 |
+
features = self.encoder(input)
|
242 |
+
out = self.decoder(features)
|
243 |
+
if turnoff_drop:
|
244 |
+
self.has_dropout = has_dropout
|
245 |
+
return out
|
246 |
+
|
247 |
+
def __init_weight(self):
|
248 |
+
for m in self.modules():
|
249 |
+
if isinstance(m, nn.Conv3d) or isinstance(m, nn.ConvTranspose3d):
|
250 |
+
torch.nn.init.kaiming_normal_(m.weight)
|
251 |
+
elif isinstance(m, nn.BatchNorm3d):
|
252 |
+
m.weight.data.fill_(1)
|
253 |
+
m.bias.data.zero_()
|
254 |
+
|
255 |
+
|
256 |
+
class VNet_roi(nn.Module):
|
257 |
+
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False):
|
258 |
+
super(VNet_roi, self).__init__()
|
259 |
+
self.has_dropout = has_dropout
|
260 |
+
|
261 |
+
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
262 |
+
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
263 |
+
|
264 |
+
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
265 |
+
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
266 |
+
|
267 |
+
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
268 |
+
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
269 |
+
|
270 |
+
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
271 |
+
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
272 |
+
|
273 |
+
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
274 |
+
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
275 |
+
|
276 |
+
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
277 |
+
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
278 |
+
|
279 |
+
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
280 |
+
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
281 |
+
|
282 |
+
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
283 |
+
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
284 |
+
|
285 |
+
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
286 |
+
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
287 |
+
|
288 |
+
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
|
289 |
+
# self.__init_weight()
|
290 |
+
|
291 |
+
def encoder(self, input):
|
292 |
+
x1 = self.block_one(input)
|
293 |
+
x1_dw = self.block_one_dw(x1)
|
294 |
+
|
295 |
+
x2 = self.block_two(x1_dw)
|
296 |
+
x2_dw = self.block_two_dw(x2)
|
297 |
+
|
298 |
+
x3 = self.block_three(x2_dw)
|
299 |
+
x3_dw = self.block_three_dw(x3)
|
300 |
+
|
301 |
+
x4 = self.block_four(x3_dw)
|
302 |
+
x4_dw = self.block_four_dw(x4)
|
303 |
+
|
304 |
+
x5 = self.block_five(x4_dw)
|
305 |
+
# x5 = F.dropout3d(x5, p=0.5, training=True)
|
306 |
+
if self.has_dropout:
|
307 |
+
x5 = self.dropout(x5)
|
308 |
+
|
309 |
+
res = [x1, x2, x3, x4, x5]
|
310 |
+
|
311 |
+
return res
|
312 |
+
|
313 |
+
def decoder(self, features):
|
314 |
+
x1 = features[0]
|
315 |
+
x2 = features[1]
|
316 |
+
x3 = features[2]
|
317 |
+
x4 = features[3]
|
318 |
+
x5 = features[4]
|
319 |
+
|
320 |
+
x5_up = self.block_five_up(x5)
|
321 |
+
x5_up = x5_up + x4
|
322 |
+
|
323 |
+
x6 = self.block_six(x5_up)
|
324 |
+
x6_up = self.block_six_up(x6)
|
325 |
+
x6_up = x6_up + x3
|
326 |
+
|
327 |
+
x7 = self.block_seven(x6_up)
|
328 |
+
x7_up = self.block_seven_up(x7)
|
329 |
+
x7_up = x7_up + x2
|
330 |
+
|
331 |
+
x8 = self.block_eight(x7_up)
|
332 |
+
x8_up = self.block_eight_up(x8)
|
333 |
+
x8_up = x8_up + x1
|
334 |
+
x9 = self.block_nine(x8_up)
|
335 |
+
# x9 = F.dropout3d(x9, p=0.5, training=True)
|
336 |
+
if self.has_dropout:
|
337 |
+
x9 = self.dropout(x9)
|
338 |
+
out = self.out_conv(x9)
|
339 |
+
return out
|
340 |
+
|
341 |
+
|
342 |
+
def forward(self, input, turnoff_drop=False):
|
343 |
+
if turnoff_drop:
|
344 |
+
has_dropout = self.has_dropout
|
345 |
+
self.has_dropout = False
|
346 |
+
features = self.encoder(input)
|
347 |
+
out = self.decoder(features)
|
348 |
+
if turnoff_drop:
|
349 |
+
self.has_dropout = has_dropout
|
350 |
+
return out
|
351 |
+
|
352 |
+
|
353 |
+
class ResVNet(nn.Module):
|
354 |
+
def __init__(self, n_channels=1, n_classes=2, n_filters=16, normalization='instancenorm', has_dropout=False):
|
355 |
+
super(ResVNet, self).__init__()
|
356 |
+
self.resencoder = resnet34()
|
357 |
+
self.has_dropout = has_dropout
|
358 |
+
|
359 |
+
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
360 |
+
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
361 |
+
|
362 |
+
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
363 |
+
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
364 |
+
|
365 |
+
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
366 |
+
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
367 |
+
|
368 |
+
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
369 |
+
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
370 |
+
|
371 |
+
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
372 |
+
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
373 |
+
|
374 |
+
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
375 |
+
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
376 |
+
|
377 |
+
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
378 |
+
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
379 |
+
|
380 |
+
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
381 |
+
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
382 |
+
|
383 |
+
|
384 |
+
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
385 |
+
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
386 |
+
|
387 |
+
|
388 |
+
if has_dropout:
|
389 |
+
self.dropout = nn.Dropout3d(p=0.5)
|
390 |
+
self.branchs = nn.ModuleList()
|
391 |
+
for i in range(1):
|
392 |
+
if has_dropout:
|
393 |
+
seq = nn.Sequential(
|
394 |
+
ConvBlock(1, n_filters, n_filters, normalization=normalization),
|
395 |
+
nn.Dropout3d(p=0.5),
|
396 |
+
nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
seq = nn.Sequential(
|
400 |
+
ConvBlock(1, n_filters, n_filters, normalization=normalization),
|
401 |
+
nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
402 |
+
)
|
403 |
+
self.branchs.append(seq)
|
404 |
+
|
405 |
+
def encoder(self, input):
|
406 |
+
x1 = self.block_one(input)
|
407 |
+
x1_dw = self.block_one_dw(x1)
|
408 |
+
|
409 |
+
x2 = self.block_two(x1_dw)
|
410 |
+
x2_dw = self.block_two_dw(x2)
|
411 |
+
|
412 |
+
x3 = self.block_three(x2_dw)
|
413 |
+
x3_dw = self.block_three_dw(x3)
|
414 |
+
|
415 |
+
x4 = self.block_four(x3_dw)
|
416 |
+
x4_dw = self.block_four_dw(x4)
|
417 |
+
|
418 |
+
x5 = self.block_five(x4_dw)
|
419 |
+
|
420 |
+
if self.has_dropout:
|
421 |
+
x5 = self.dropout(x5)
|
422 |
+
|
423 |
+
res = [x1, x2, x3, x4, x5]
|
424 |
+
|
425 |
+
return res
|
426 |
+
|
427 |
+
def decoder(self, features):
|
428 |
+
x1 = features[0]
|
429 |
+
x2 = features[1]
|
430 |
+
x3 = features[2]
|
431 |
+
x4 = features[3]
|
432 |
+
x5 = features[4]
|
433 |
+
|
434 |
+
x5_up = self.block_five_up(x5)
|
435 |
+
x5_up = x5_up + x4
|
436 |
+
|
437 |
+
x6 = self.block_six(x5_up)
|
438 |
+
x6_up = self.block_six_up(x6)
|
439 |
+
x6_up = x6_up + x3
|
440 |
+
|
441 |
+
x7 = self.block_seven(x6_up)
|
442 |
+
x7_up = self.block_seven_up(x7)
|
443 |
+
x7_up = x7_up + x2
|
444 |
+
|
445 |
+
x8 = self.block_eight(x7_up)
|
446 |
+
x8_up = self.block_eight_up(x8)
|
447 |
+
x8_up = x8_up + x1
|
448 |
+
|
449 |
+
|
450 |
+
x9 = self.block_nine(x8_up)
|
451 |
+
|
452 |
+
out = self.out_conv(x9)
|
453 |
+
|
454 |
+
|
455 |
+
return out
|
456 |
+
|
457 |
+
def forward(self, input, turnoff_drop=False):
|
458 |
+
if turnoff_drop:
|
459 |
+
has_dropout = self.has_dropout
|
460 |
+
self.has_dropout = False
|
461 |
+
features = self.resencoder(input)
|
462 |
+
out = self.decoder(features)
|
463 |
+
if turnoff_drop:
|
464 |
+
self.has_dropout = has_dropout
|
465 |
+
return out
|
466 |
+
|
467 |
+
|
468 |
+
__all__ = ['ResNet', 'resnet34']
|
469 |
+
|
470 |
+
|
471 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
472 |
+
"""3x3 convolution with padding"""
|
473 |
+
return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
474 |
+
|
475 |
+
|
476 |
+
def conv3x3_bn_relu(in_planes, out_planes, stride=1):
|
477 |
+
return nn.Sequential(
|
478 |
+
conv3x3(in_planes, out_planes, stride),
|
479 |
+
nn.InstanceNorm3d(out_planes),
|
480 |
+
nn.ReLU()
|
481 |
+
)
|
482 |
+
|
483 |
+
|
484 |
+
class BasicBlock(nn.Module):
|
485 |
+
expansion = 1
|
486 |
+
|
487 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
488 |
+
groups=1, base_width=64, dilation=-1):
|
489 |
+
super(BasicBlock, self).__init__()
|
490 |
+
if groups != 1 or base_width != 64:
|
491 |
+
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
492 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
493 |
+
self.bn1 = nn.InstanceNorm3d(planes)
|
494 |
+
self.relu = nn.ReLU(inplace=True)
|
495 |
+
self.conv2 = conv3x3(planes, planes)
|
496 |
+
self.bn2 = nn.InstanceNorm3d(planes)
|
497 |
+
self.downsample = downsample
|
498 |
+
self.stride = stride
|
499 |
+
|
500 |
+
def forward(self, x):
|
501 |
+
residual = x
|
502 |
+
|
503 |
+
out = self.conv1(x)
|
504 |
+
out = self.bn1(out)
|
505 |
+
out = self.relu(out)
|
506 |
+
|
507 |
+
out = self.conv2(out)
|
508 |
+
out = self.bn2(out)
|
509 |
+
|
510 |
+
if self.downsample is not None:
|
511 |
+
residual = self.downsample(x)
|
512 |
+
|
513 |
+
out += residual
|
514 |
+
out = self.relu(out)
|
515 |
+
|
516 |
+
return out
|
517 |
+
|
518 |
+
|
519 |
+
class Bottleneck(nn.Module):
|
520 |
+
expansion = 4
|
521 |
+
|
522 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
523 |
+
groups=1, base_width=64, dilation=1):
|
524 |
+
super(Bottleneck, self).__init__()
|
525 |
+
width = int(planes * (base_width / 64.)) * groups
|
526 |
+
self.conv1 = nn.Conv3d(inplanes, width, kernel_size=1, bias=False)
|
527 |
+
self.bn1 = nn.InstanceNorm3d(width)
|
528 |
+
self.conv2 = nn.Conv3d(width, width, kernel_size=3, stride=stride, dilation=dilation,
|
529 |
+
padding=dilation, groups=groups, bias=False)
|
530 |
+
self.bn2 = nn.InstanceNorm3d(width)
|
531 |
+
self.conv3 = nn.Conv3d(width, planes * self.expansion, kernel_size=1, bias=False)
|
532 |
+
self.bn3 = nn.InstanceNorm3d(planes * self.expansion)
|
533 |
+
self.relu = nn.ReLU(inplace=True)
|
534 |
+
self.downsample = downsample
|
535 |
+
self.stride = stride
|
536 |
+
|
537 |
+
def forward(self, x):
|
538 |
+
residual = x
|
539 |
+
|
540 |
+
out = self.conv1(x)
|
541 |
+
out = self.bn1(out)
|
542 |
+
out = self.relu(out)
|
543 |
+
|
544 |
+
out = self.conv2(out)
|
545 |
+
out = self.bn2(out)
|
546 |
+
out = self.relu(out)
|
547 |
+
|
548 |
+
out = self.conv3(out)
|
549 |
+
out = self.bn3(out)
|
550 |
+
|
551 |
+
if self.downsample is not None:
|
552 |
+
residual = self.downsample(x)
|
553 |
+
|
554 |
+
out += residual
|
555 |
+
out = self.relu(out)
|
556 |
+
|
557 |
+
return out
|
558 |
+
|
559 |
+
|
560 |
+
class ResNet(nn.Module):
|
561 |
+
|
562 |
+
def __init__(self, block, layers, in_channel=1, width=1,
|
563 |
+
groups=1, width_per_group=64,
|
564 |
+
mid_dim=1024, low_dim=128,
|
565 |
+
avg_down=False, deep_stem=False,
|
566 |
+
head_type='mlp_head', layer4_dilation=1):
|
567 |
+
super(ResNet, self).__init__()
|
568 |
+
self.avg_down = avg_down
|
569 |
+
self.inplanes = 16 * width
|
570 |
+
self.base = int(16 * width)
|
571 |
+
self.groups = groups
|
572 |
+
self.base_width = width_per_group
|
573 |
+
|
574 |
+
mid_dim = self.base * 8 * block.expansion
|
575 |
+
|
576 |
+
if deep_stem:
|
577 |
+
self.conv1 = nn.Sequential(
|
578 |
+
conv3x3_bn_relu(in_channel, 32, stride=2),
|
579 |
+
conv3x3_bn_relu(32, 32, stride=1),
|
580 |
+
conv3x3(32, 64, stride=1)
|
581 |
+
)
|
582 |
+
else:
|
583 |
+
self.conv1 = nn.Conv3d(in_channel, self.inplanes, kernel_size=7, stride=1, padding=3, bias=False)
|
584 |
+
|
585 |
+
self.bn1 = nn.InstanceNorm3d(self.inplanes)
|
586 |
+
self.relu = nn.ReLU(inplace=True)
|
587 |
+
|
588 |
+
self.maxpool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1)
|
589 |
+
self.layer1 = self._make_layer(block, self.base*2, layers[0],stride=2)
|
590 |
+
self.layer2 = self._make_layer(block, self.base * 4, layers[1], stride=2)
|
591 |
+
self.layer3 = self._make_layer(block, self.base * 8, layers[2], stride=2)
|
592 |
+
if layer4_dilation == 1:
|
593 |
+
self.layer4 = self._make_layer(block, self.base * 16, layers[3], stride=2)
|
594 |
+
elif layer4_dilation == 2:
|
595 |
+
self.layer4 = self._make_layer(block, self.base * 16, layers[3], stride=1, dilation=2)
|
596 |
+
else:
|
597 |
+
raise NotImplementedError
|
598 |
+
self.avgpool = nn.AvgPool3d(7, stride=1)
|
599 |
+
|
600 |
+
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
|
601 |
+
downsample = None
|
602 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
603 |
+
if self.avg_down:
|
604 |
+
downsample = nn.Sequential(
|
605 |
+
nn.AvgPool3d(kernel_size=stride, stride=stride),
|
606 |
+
nn.Conv3d(self.inplanes, planes * block.expansion,
|
607 |
+
kernel_size=1, stride=1, bias=False),
|
608 |
+
nn.InstanceNorm3d(planes * block.expansion),
|
609 |
+
)
|
610 |
+
else:
|
611 |
+
downsample = nn.Sequential(
|
612 |
+
nn.Conv3d(self.inplanes, planes * block.expansion,
|
613 |
+
kernel_size=1, stride=stride, bias=False),
|
614 |
+
nn.InstanceNorm3d(planes * block.expansion),
|
615 |
+
)
|
616 |
+
|
617 |
+
layers = [block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, dilation)]
|
618 |
+
self.inplanes = planes * block.expansion
|
619 |
+
for _ in range(1, blocks):
|
620 |
+
layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=dilation))
|
621 |
+
|
622 |
+
return nn.Sequential(*layers)
|
623 |
+
|
624 |
+
def forward(self, x):
|
625 |
+
x = self.conv1(x)
|
626 |
+
x = self.bn1(x)
|
627 |
+
x = self.relu(x)
|
628 |
+
#c2 = self.maxpool(x)
|
629 |
+
c2 = self.layer1(x)
|
630 |
+
c3 = self.layer2(c2)
|
631 |
+
c4 = self.layer3(c3)
|
632 |
+
c5 = self.layer4(c4)
|
633 |
+
|
634 |
+
|
635 |
+
return [x,c2,c3,c4,c5]
|
636 |
+
|
637 |
+
|
638 |
+
def resnet34(**kwargs):
|
639 |
+
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
640 |
+
|
641 |
+
|
642 |
+
def label_rescale(image_label, w_ori, h_ori, z_ori, flag):
|
643 |
+
w_ori, h_ori, z_ori = int(w_ori), int(h_ori), int(z_ori)
|
644 |
+
# resize label map (int)
|
645 |
+
if flag == 'trilinear':
|
646 |
+
teeth_ids = np.unique(image_label)
|
647 |
+
image_label_ori = np.zeros((w_ori, h_ori, z_ori))
|
648 |
+
|
649 |
+
|
650 |
+
image_label = torch.from_numpy(image_label).cuda(0)
|
651 |
+
|
652 |
+
|
653 |
+
for label_id in range(len(teeth_ids)):
|
654 |
+
image_label_bn = (image_label == teeth_ids[label_id]).float()
|
655 |
+
image_label_bn = image_label_bn[None, None, :, :, :]
|
656 |
+
image_label_bn = torch.nn.functional.interpolate(image_label_bn, size=(w_ori, h_ori, z_ori),
|
657 |
+
mode='trilinear', align_corners=False)
|
658 |
+
image_label_bn = image_label_bn[0, 0, :, :, :]
|
659 |
+
image_label_bn = image_label_bn.cpu().data.numpy()
|
660 |
+
image_label_ori[image_label_bn > 0.5] = teeth_ids[label_id]
|
661 |
+
image_label = image_label_ori
|
662 |
+
|
663 |
+
if flag == 'nearest':
|
664 |
+
|
665 |
+
|
666 |
+
image_label = torch.from_numpy(image_label).cuda(0)
|
667 |
+
|
668 |
+
|
669 |
+
image_label = image_label[None, None, :, :, :].float()
|
670 |
+
image_label = torch.nn.functional.interpolate(image_label, size=(w_ori, h_ori, z_ori), mode='nearest')
|
671 |
+
image_label = image_label[0, 0, :, :, :].cpu().data.numpy()
|
672 |
+
return image_label
|
673 |
+
|
674 |
+
|
675 |
+
def img_crop(image_bbox):
|
676 |
+
if image_bbox.sum() > 0:
|
677 |
+
|
678 |
+
x_min = np.nonzero(image_bbox)[0].min() - 8
|
679 |
+
x_max = np.nonzero(image_bbox)[0].max() + 8
|
680 |
+
|
681 |
+
y_min = np.nonzero(image_bbox)[1].min() - 16
|
682 |
+
y_max = np.nonzero(image_bbox)[1].max() + 16
|
683 |
+
|
684 |
+
z_min = np.nonzero(image_bbox)[2].min() - 16
|
685 |
+
z_max = np.nonzero(image_bbox)[2].max() + 16
|
686 |
+
|
687 |
+
if x_min < 0:
|
688 |
+
x_min = 0
|
689 |
+
if y_min < 0:
|
690 |
+
y_min = 0
|
691 |
+
if z_min < 0:
|
692 |
+
z_min = 0
|
693 |
+
if x_max > image_bbox.shape[0]:
|
694 |
+
x_max = image_bbox.shape[0]
|
695 |
+
if y_max > image_bbox.shape[1]:
|
696 |
+
y_max = image_bbox.shape[1]
|
697 |
+
if z_max > image_bbox.shape[2]:
|
698 |
+
z_max = image_bbox.shape[2]
|
699 |
+
|
700 |
+
if (x_max - x_min) % 16 != 0:
|
701 |
+
x_max -= (x_max - x_min) % 16
|
702 |
+
if (y_max - y_min) % 16 != 0:
|
703 |
+
y_max -= (y_max - y_min) % 16
|
704 |
+
if (z_max - z_min) % 16 != 0:
|
705 |
+
z_max -= (z_max - z_min) % 16
|
706 |
+
|
707 |
+
if image_bbox.sum() == 0:
|
708 |
+
x_min, x_max, y_min, y_max, z_min, z_max = -1, image_bbox.shape[0], 0, image_bbox.shape[1], 0, image_bbox.shape[
|
709 |
+
2]
|
710 |
+
return x_min, x_max, y_min, y_max, z_min, z_max
|
711 |
+
|
712 |
+
|
713 |
+
def roi_extraction(image, net_roi, ids):
|
714 |
+
w, h, d = image.shape
|
715 |
+
# roi binary segmentation parameters, the input spacing is 0.4 mm
|
716 |
+
print('---run the roi binary segmentation.')
|
717 |
+
|
718 |
+
stride_xy = 32
|
719 |
+
stride_z = 16
|
720 |
+
patch_size_roi_stage = (112, 112, 80)
|
721 |
+
|
722 |
+
label_roi = roi_detection(net_roi, image[0:w:2, 0:h:2, 0:d:2], stride_xy, stride_z,
|
723 |
+
patch_size_roi_stage) # (400,400,200)
|
724 |
+
print(label_roi.shape, np.max(label_roi))
|
725 |
+
label_roi = label_rescale(label_roi, w, h, d, 'trilinear') # (800,800,400)
|
726 |
+
|
727 |
+
label_roi = morphology.remove_small_objects(label_roi.astype(bool), 5000, connectivity=3).astype(float)
|
728 |
+
|
729 |
+
label_roi = ndimage.grey_dilation(label_roi, size=(5, 5, 5))
|
730 |
+
|
731 |
+
label_roi = morphology.remove_small_objects(label_roi.astype(bool), 400000, connectivity=3).astype(
|
732 |
+
float)
|
733 |
+
|
734 |
+
label_roi = ndimage.grey_erosion(label_roi, size=(5, 5, 5))
|
735 |
+
|
736 |
+
# crop image
|
737 |
+
x_min, x_max, y_min, y_max, z_min, z_max = img_crop(label_roi)
|
738 |
+
if x_min == -1: # non-foreground label
|
739 |
+
whole_label = np.zeros((w, h, d))
|
740 |
+
return whole_label
|
741 |
+
image = image[x_min:x_max, y_min:y_max, z_min:z_max]
|
742 |
+
print("image shape(after roi): ", image.shape)
|
743 |
+
|
744 |
+
return image, x_min, x_max, y_min, y_max, z_min, z_max
|
745 |
+
|
746 |
+
|
747 |
+
def roi_detection(net, image, stride_xy, stride_z, patch_size):
|
748 |
+
w, h, d = image.shape # (400,400,200)
|
749 |
+
|
750 |
+
# if the size of image is less than patch_size, then padding it
|
751 |
+
add_pad = False
|
752 |
+
if w < patch_size[0]:
|
753 |
+
w_pad = patch_size[0] - w
|
754 |
+
add_pad = True
|
755 |
+
else:
|
756 |
+
w_pad = 0
|
757 |
+
if h < patch_size[1]:
|
758 |
+
h_pad = patch_size[1] - h
|
759 |
+
add_pad = True
|
760 |
+
else:
|
761 |
+
h_pad = 0
|
762 |
+
if d < patch_size[2]:
|
763 |
+
d_pad = patch_size[2] - d
|
764 |
+
add_pad = True
|
765 |
+
else:
|
766 |
+
d_pad = 0
|
767 |
+
wl_pad, wr_pad = w_pad // 2, w_pad - w_pad // 2
|
768 |
+
hl_pad, hr_pad = h_pad // 2, h_pad - h_pad // 2
|
769 |
+
dl_pad, dr_pad = d_pad // 2, d_pad - d_pad // 2
|
770 |
+
if add_pad:
|
771 |
+
image = np.pad(image, [(wl_pad, wr_pad), (hl_pad, hr_pad), (dl_pad, dr_pad)], mode='constant',
|
772 |
+
constant_values=0)
|
773 |
+
ww, hh, dd = image.shape
|
774 |
+
|
775 |
+
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1 # 2
|
776 |
+
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1 # 2
|
777 |
+
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1 # 2
|
778 |
+
score_map = np.zeros((2,) + image.shape).astype(np.float32)
|
779 |
+
cnt = np.zeros(image.shape).astype(np.float32)
|
780 |
+
count = 0
|
781 |
+
for x in range(0, sx):
|
782 |
+
xs = min(stride_xy * x, ww - patch_size[0])
|
783 |
+
for y in range(0, sy):
|
784 |
+
ys = min(stride_xy * y, hh - patch_size[1])
|
785 |
+
for z in range(0, sz):
|
786 |
+
zs = min(stride_z * z, dd - patch_size[2])
|
787 |
+
test_patch = image[xs:xs + patch_size[0], ys:ys + patch_size[1],
|
788 |
+
zs:zs + patch_size[2]]
|
789 |
+
test_patch = np.expand_dims(np.expand_dims(test_patch, axis=0), axis=0).astype(
|
790 |
+
np.float32)
|
791 |
+
|
792 |
+
|
793 |
+
test_patch = torch.from_numpy(test_patch).cuda(0)
|
794 |
+
|
795 |
+
|
796 |
+
with torch.no_grad():
|
797 |
+
y1 = net(test_patch) # (1,2,256,256,160)
|
798 |
+
y = F.softmax(y1, dim=1) # (1,2,256,256,160)
|
799 |
+
y = y.cpu().data.numpy()
|
800 |
+
y = y[0, :, :, :, :] # (2,256,256,160)
|
801 |
+
score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \
|
802 |
+
= score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1],
|
803 |
+
zs:zs + patch_size[2]] + y # (2,400,400,200)
|
804 |
+
cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \
|
805 |
+
= cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] + 1 # (400,400,200)
|
806 |
+
count = count + 1
|
807 |
+
score_map = score_map / np.expand_dims(cnt, axis=0)
|
808 |
+
|
809 |
+
label_map = np.argmax(score_map, axis=0) # (400,400,200),0/1
|
810 |
+
if add_pad:
|
811 |
+
label_map = label_map[wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d]
|
812 |
+
score_map = score_map[:, wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d]
|
813 |
+
return label_map
|
814 |
+
|
815 |
+
|
816 |
+
def test_single_case_array(model_array, image=None, stride_xy=None, stride_z=None, patch_size=None, num_classes=1):
|
817 |
+
w, h, d = image.shape
|
818 |
+
|
819 |
+
# if the size of image is less than patch_size, then padding it
|
820 |
+
add_pad = False
|
821 |
+
if w < patch_size[0]:
|
822 |
+
w_pad = patch_size[0]-w
|
823 |
+
add_pad = True
|
824 |
+
else:
|
825 |
+
w_pad = 0
|
826 |
+
if h < patch_size[1]:
|
827 |
+
h_pad = patch_size[1]-h
|
828 |
+
add_pad = True
|
829 |
+
else:
|
830 |
+
h_pad = 0
|
831 |
+
if d < patch_size[2]:
|
832 |
+
d_pad = patch_size[2]-d
|
833 |
+
add_pad = True
|
834 |
+
else:
|
835 |
+
d_pad = 0
|
836 |
+
wl_pad, wr_pad = w_pad//2,w_pad-w_pad//2
|
837 |
+
hl_pad, hr_pad = h_pad//2,h_pad-h_pad//2
|
838 |
+
dl_pad, dr_pad = d_pad//2,d_pad-d_pad//2
|
839 |
+
if add_pad:
|
840 |
+
image = np.pad(image, [(wl_pad,wr_pad),(hl_pad,hr_pad), (dl_pad, dr_pad)], mode='constant', constant_values=0)
|
841 |
+
|
842 |
+
ww,hh,dd = image.shape
|
843 |
+
|
844 |
+
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1
|
845 |
+
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1
|
846 |
+
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1
|
847 |
+
score_map = np.zeros((num_classes, ) + image.shape).astype(np.float32)
|
848 |
+
cnt = np.zeros(image.shape).astype(np.float32)
|
849 |
+
|
850 |
+
for x in range(0, sx):
|
851 |
+
xs = min(stride_xy*x, ww-patch_size[0])
|
852 |
+
for y in range(0, sy):
|
853 |
+
ys = min(stride_xy * y,hh-patch_size[1])
|
854 |
+
for z in range(0, sz):
|
855 |
+
zs = min(stride_z * z, dd-patch_size[2])
|
856 |
+
test_patch = image[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]]
|
857 |
+
test_patch = np.expand_dims(np.expand_dims(test_patch,axis=0),axis=0).astype(np.float32)
|
858 |
+
|
859 |
+
|
860 |
+
test_patch = torch.from_numpy(test_patch).cuda()
|
861 |
+
|
862 |
+
|
863 |
+
for model in model_array:
|
864 |
+
output = model(test_patch)
|
865 |
+
y_temp = F.softmax(output, dim=1)
|
866 |
+
y_temp = y_temp.cpu().data.numpy()
|
867 |
+
y += y_temp[0,:,:,:,:]
|
868 |
+
y /= len(model_array)
|
869 |
+
score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
|
870 |
+
= score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + y
|
871 |
+
cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
|
872 |
+
= cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + 1
|
873 |
+
score_map = score_map/np.expand_dims(cnt,axis=0)
|
874 |
+
|
875 |
+
label_map = np.argmax(score_map, axis = 0)
|
876 |
+
if add_pad:
|
877 |
+
label_map = label_map[wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
|
878 |
+
score_map = score_map[:,wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
|
879 |
+
return label_map, score_map
|
880 |
+
|
881 |
+
def calculate_metric_percase(pred, gt):
|
882 |
+
dice = metric.binary.dc(pred, gt)
|
883 |
+
jc = metric.binary.jc(pred, gt)
|
884 |
+
hd = metric.binary.hd95(pred, gt)
|
885 |
+
asd = metric.binary.asd(pred, gt)
|
886 |
+
|
887 |
+
return dice, jc, hd, asd
|
888 |
+
|
889 |
+
|
890 |
+
class RailNetSystem(nn.Module, PyTorchModelHubMixin):
|
891 |
+
def __init__(self, n_channels: int, n_classes: int, normalization: str):
|
892 |
+
super().__init__()
|
893 |
+
|
894 |
+
self.num_classes = 2
|
895 |
+
|
896 |
+
|
897 |
+
self.net_roi = VNet_roi(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=False).cuda()
|
898 |
+
|
899 |
+
|
900 |
+
self.model_array = []
|
901 |
+
for i in range(4):
|
902 |
+
if i < 2:
|
903 |
+
model = VNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).cuda()
|
904 |
+
else:
|
905 |
+
model = ResVNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).cuda()
|
906 |
+
self.model_array.append(model)
|
907 |
+
|
908 |
+
def load_weights(self, weight_dir=".", from_hub=False, repo_id=None):
|
909 |
+
def load(file_name):
|
910 |
+
if from_hub:
|
911 |
+
return hf_hub_download(repo_id=repo_id, filename=f"model weights/{file_name}")
|
912 |
+
else:
|
913 |
+
return os.path.join(weight_dir, "model weights", file_name)
|
914 |
+
|
915 |
+
self.net_roi.load_state_dict(torch.load(load("roi_best_model.pth"), map_location="cuda", weights_only=True))
|
916 |
+
self.net_roi.eval()
|
917 |
+
|
918 |
+
model_files = [
|
919 |
+
"rail_0_iter_7995_best.pth",
|
920 |
+
"rail_1_iter_7995_best.pth",
|
921 |
+
"rail_2_iter_7995_best.pth",
|
922 |
+
"rail_3_iter_7995_best.pth",
|
923 |
+
]
|
924 |
+
for i, file in enumerate(model_files):
|
925 |
+
self.model_array[i].load_state_dict(torch.load(load(file), map_location="cuda", weights_only=True))
|
926 |
+
self.model_array[i].eval()
|
927 |
+
|
928 |
+
def forward(self, image, label, save_path="./output", name="case"):
|
929 |
+
if not os.path.exists(save_path):
|
930 |
+
os.makedirs(save_path)
|
931 |
+
nib.save(nib.Nifti1Image(image.astype(np.float32), np.eye(4)), os.path.join(save_path, f"{name}_img.nii.gz"))
|
932 |
+
|
933 |
+
w, h, d = image.shape
|
934 |
+
|
935 |
+
image, x_min, x_max, y_min, y_max, z_min, z_max = roi_extraction(image, self.net_roi, name)
|
936 |
+
|
937 |
+
prediction, _ = test_single_case_array(self.model_array, image, stride_xy=64, stride_z=32, patch_size=(112, 112, 80), num_classes=self.num_classes)
|
938 |
+
|
939 |
+
prediction = morphology.remove_small_objects(prediction.astype(bool), 3000, connectivity=3).astype(float)
|
940 |
+
|
941 |
+
new_prediction = np.zeros((w, h, d))
|
942 |
+
new_prediction[x_min:x_max, y_min:y_max, z_min:z_max] = prediction
|
943 |
+
|
944 |
+
dice, jc, hd, asd = calculate_metric_percase(new_prediction, label[:])
|
945 |
+
|
946 |
+
nib.save(nib.Nifti1Image(new_prediction.astype(np.float32), np.eye(4)), os.path.join(save_path, f"{name}_pred.nii.gz"))
|
947 |
+
|
948 |
+
return new_prediction, dice, jc, hd, asd
|