File size: 4,629 Bytes
d7db496
 
 
 
 
 
 
 
 
 
 
 
 
205db22
d7db496
 
 
205db22
d7db496
 
 
 
 
 
 
 
 
205db22
 
 
 
d7db496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205db22
d7db496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205db22
d7db496
 
205db22
 
 
 
d7db496
205db22
d7db496
205db22
d7db496
 
 
 
205db22
d7db496
205db22
d7db496
 
 
 
 
 
 
 
 
 
 
 
205db22
 
d7db496
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import numpy as np
import logging
from tqdm import tqdm

class SwarmAgent:
    def __init__(self, position, velocity):
        self.position = position
        self.velocity = velocity
        self.m = np.zeros_like(position)
        self.v = np.zeros_like(position)

class SwarmNeuralNetwork:
    def __init__(self, num_agents, param_shape, target_response, optimization_function):
        self.param_shape = param_shape
        self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
        self.target_response = target_response
        self.optimization_function = optimization_function
        self.current_epoch = 0
        self.noise_schedule = np.linspace(0.1, 0.002, 1000)  # Noise schedule

    def random_position(self):
        return np.random.randn(*self.param_shape)  # Use Gaussian noise

    def random_velocity(self):
        return np.random.randn(*self.param_shape) * 0.01

    def evaluate_function(self, params):
        # Evaluate the optimization function
        response = self.optimization_function(params)
        return response

    def update_agents(self, timestep):
        noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]

        for agent in self.agents:
            # Predict noise
            predicted_noise = agent.position - self.target_response
            
            # Denoise
            denoised = (agent.position - noise_level * predicted_noise) / (1 - noise_level)
            
            # Add scaled noise for next step
            agent.position = denoised + np.random.randn(*self.param_shape) * np.sqrt(noise_level)
            
            # Clip values
            agent.position = np.clip(agent.position, -1, 1)

    def train(self, epochs):
        logging.basicConfig(filename='training.log', level=logging.INFO)

        for epoch in tqdm(range(epochs), desc="Training Epochs"):
            self.update_agents(epoch)

            # Evaluate performance
            responses = [self.evaluate_function(agent.position) for agent in self.agents]
            mse = np.mean((np.array(responses) - self.target_response)**2)
            logging.info(f"Epoch {epoch}, MSE: {mse}")

            if epoch % 10 == 0:
                print(f"Epoch {epoch}, MSE: {mse}")
            self.current_epoch += 1

    def save_model(self, filename):
        model_state = {
            'agents': self.agents,
            'current_epoch': self.current_epoch
        }
        np.save(filename, model_state)

    def load_model(self, filename):
        model_state = np.load(filename, allow_pickle=True).item()
        self.agents = model_state['agents']
        self.current_epoch = model_state['current_epoch']

    def generate_new_parameters(self, num_steps=1000):
        for agent in self.agents:
            agent.position = np.random.randn(*self.param_shape)
        
        for step in tqdm(range(num_steps), desc="Generating Parameters"):
            self.update_agents(num_steps - step - 1)  # Reverse order
        
        best_agent = min(self.agents, key=lambda agent: np.mean((self.evaluate_function(agent.position) - self.target_response)**2))
        return best_agent.position

# Optimization function
def optimization_function(params):
    return np.sum((params - 3)**2)  # Example: simple quadratic function

# Gradio Interface
def train_snn(target_response, num_agents, epochs):
    param_shape = (10,)  # Example parameter shape
    snn = SwarmNeuralNetwork(num_agents=num_agents, param_shape=param_shape, target_response=target_response, optimization_function=optimization_function)
    snn.train(epochs=epochs)
    snn.save_model('snn_model.npy')
    return snn.generate_new_parameters()

def generate_new_parameters():
    param_shape = (10,)  # Example parameter shape
    snn = SwarmNeuralNetwork(num_agents=2000, param_shape=param_shape, target_response=None, optimization_function=optimization_function)
    snn.load_model('snn_model.npy')
    new_params = snn.generate_new_parameters()
    return new_params

interface = gr.Interface(
    fn=train_snn,
    inputs=[
        gr.Number(label="Target Response"),
        gr.Slider(minimum=500, maximum=3000, value=2000, label="Number of Agents"),
        gr.Slider(minimum=10, maximum=200, value=100, label="Number of Epochs")
    ],
    outputs=gr.Textbox(label="Generated Parameters"),
    title="Swarm Neural Network Function Optimization",
    description="Set the target response, number of agents, and epochs to train the Swarm Neural Network to generate optimized function parameters."
)

interface.launch()