File size: 8,353 Bytes
6734e84 d0e6741 2a16a45 6734e84 06fedb7 0a5b12b d0e6741 06fedb7 d0e6741 6734e84 77155e4 6734e84 a57565d 3422647 06fedb7 6734e84 77155e4 6734e84 06fedb7 6734e84 2149bc7 a57565d 3422647 a57565d 6734e84 a5cd092 b5c1d21 2a16a45 a57565d b5c1d21 cc493ed 2149bc7 2a16a45 cc493ed 2a16a45 3422647 cc493ed 3422647 cc493ed 6734e84 d0e6741 2149bc7 06fedb7 2149bc7 d0e6741 1f2f347 2149bc7 06fedb7 2149bc7 3422647 01114e6 9ac1b3c 3422647 01114e6 3422647 01114e6 06fedb7 1a7401c 2149bc7 3422647 06fedb7 2149bc7 06fedb7 2149bc7 06fedb7 430e8dc 2149bc7 430e8dc 2149bc7 430e8dc 06fedb7 2149bc7 430e8dc 2149bc7 430e8dc d2b7005 a57565d 2149bc7 a57565d 3422647 a57565d 06fedb7 2149bc7 430e8dc 2149bc7 430e8dc 6e08bcb 2149bc7 6e08bcb 2149bc7 430e8dc 6e08bcb 2149bc7 430e8dc 2149bc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import threading
import uvicorn
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
from huggingface_hub import hf_hub_download
import zipfile
from datetime import datetime
import random
# ✅ Sabitler
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_BASE = "UcsTurkey/kanarya-750m-fixed"
FINE_TUNE_ZIP = "trained_model_000_000.zip"
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
CONFIDENCE_THRESHOLD = -1.5
USE_SAMPLING = False # ✅ Sampling kapalı (test modu)
FALLBACK_ANSWERS = [
"Bu konuda maalesef bilgim yok.",
"Ne demek istediğinizi tam anlayamadım.",
"Bu soruya şu an yanıt veremiyorum."
]
def log(message):
timestamp = datetime.now().strftime("%H:%M:%S")
try:
print(f"[{timestamp}] {message}")
except UnicodeEncodeError:
safe_message = message.encode("utf-8", errors="replace").decode("utf-8", errors="ignore")
print(f"[{timestamp}] {safe_message}")
os.sys.stdout.flush()
app = FastAPI()
chat_history = []
model = None
tokenizer = None
class Message(BaseModel):
user_input: str
def detect_environment():
device = "cuda" if torch.cuda.is_available() else "cpu"
supports_bfloat16 = False
gpu_name = "Yok"
if device == "cuda":
props = torch.cuda.get_device_properties(0)
gpu_name = props.name
major, _ = torch.cuda.get_device_capability(0)
supports_bfloat16 = major >= 8
return {
"device": device,
"gpu_name": gpu_name,
"supports_bfloat16": supports_bfloat16,
"expected_config": {
"gpu": "Nvidia A100", "min_vram": "16GB", "cpu": "8 vCPU"
}
}
@app.get("/")
def health():
return {"status": "ok"}
@app.get("/status")
def status():
env = detect_environment()
return {
"device": env["device"],
"gpu": env["gpu_name"],
"supports_bfloat16": env["supports_bfloat16"],
"expected_config": env["expected_config"],
"note": "Sistem bu bilgilerle çalışıyor. bfloat16 desteklenmiyorsa performans sınırlı olabilir."
}
@app.get("/start", response_class=HTMLResponse)
def root():
return """
<html>
<head><title>Fine-Tune Chat</title></head>
<body>
<h2>Fine-tune Chat Test</h2>
<textarea id=\"input\" rows=\"4\" cols=\"60\" placeholder=\"Bir şeyler yaz...\"></textarea><br><br>
<button onclick=\"send()\">Gönder</button>
<pre id=\"output\"></pre>
<script>
async function send() {
const input = document.getElementById(\"input\").value;
const res = await fetch('/chat', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ user_input: input })
});
const data = await res.json();
document.getElementById('output').innerText = data.answer || data.error || 'Hata oluştu.';
}
</script>
</body>
</html>
"""
@app.post("/chat")
def chat(msg: Message):
try:
log(f"Kullanıcı mesajı alındı: {msg}")
global model, tokenizer
if model is None or tokenizer is None:
log("Hata: Model henüz yüklenmedi.")
return {"error": "Model yüklenmedi. Lütfen birkaç saniye sonra tekrar deneyin."}
user_input = msg.user_input.strip()
if not user_input:
return {"error": "Boş giriş"}
full_prompt = f"SORU: {user_input}\nCEVAP:"
log(f"Prompt: {full_prompt}")
inputs = tokenizer(full_prompt, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
log(f"Tokenizer input_ids: {inputs['input_ids']}")
log(f"input shape: {inputs['input_ids'].shape}")
with torch.no_grad():
if USE_SAMPLING:
output = model.generate(
**inputs,
max_new_tokens=100,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
return_dict_in_generate=True,
output_scores=True,
suppress_tokens=[tokenizer.pad_token_id] if tokenizer.pad_token_id else None
)
else:
output = model.generate(
**inputs,
max_new_tokens=100,
do_sample=False,
return_dict_in_generate=True,
output_scores=True,
suppress_tokens=[tokenizer.pad_token_id] if tokenizer.pad_token_id else None
)
generated_ids = output.sequences[0]
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
answer = generated_text[len(full_prompt):].strip()
if output.scores and len(output.scores) > 0:
first_token_logit = output.scores[0][0]
if torch.isnan(first_token_logit).any() or torch.isinf(first_token_logit).any():
log("Geçersiz logit (NaN/Inf) tespit edildi, fallback cevabı gönderiliyor.")
return {"answer": random.choice(FALLBACK_ANSWERS), "chat_history": chat_history}
top_logit_score = torch.max(first_token_logit).item()
log(f"İlk token logit skoru: {top_logit_score:.4f}")
if top_logit_score < CONFIDENCE_THRESHOLD:
fallback = random.choice(FALLBACK_ANSWERS)
log(f"Düşük güven: fallback cevabı gönderiliyor: {fallback}")
answer = fallback
chat_history.append({"user": user_input, "bot": answer})
log(f"Soru: {user_input} → Yanıt: {answer[:60]}...")
return {"answer": answer, "chat_history": chat_history}
except Exception as e:
log(f"/chat sırasında hata oluştu: {e}")
return {"error": str(e)}
def setup_model():
try:
global model, tokenizer
log("Fine-tune zip indiriliyor...")
zip_path = hf_hub_download(
repo_id=FINE_TUNE_REPO,
filename=FINE_TUNE_ZIP,
repo_type="model",
token=HF_TOKEN
)
extract_dir = "/app/extracted"
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_dir)
log("Zip başarıyla açıldı.")
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"))
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
env = detect_environment()
device = env["device"]
dtype = torch.bfloat16 if env["supports_bfloat16"] else (torch.float16 if device == "cuda" else torch.float32)
log(f"Ortam: GPU = {env['gpu_name']}, Device = {device}, bfloat16 destekleniyor mu: {env['supports_bfloat16']}")
log(f"Model {device.upper()} üzerinde {dtype} precision ile yüklenecek.")
log("Beklenen minimum sistem konfigürasyonu:")
log(f"- GPU: {env['expected_config']['gpu']}")
log(f"- GPU Bellek: {env['expected_config']['min_vram']}")
log(f"- CPU: {env['expected_config']['cpu']}")
base_model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
peft_model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output"))
model = peft_model.model.to(device)
model.eval()
log(f"Model başarıyla yüklendi. dtype={next(model.parameters()).dtype}, device={next(model.parameters()).device}")
except Exception as e:
log(f"setup_model() sırasında hata oluştu: {e}")
def run_server():
log("Uvicorn sunucusu başlatılıyor...")
uvicorn.run(app, host="0.0.0.0", port=7860)
log("===== Application Startup =====")
threading.Thread(target=setup_model, daemon=True).start()
threading.Thread(target=run_server, daemon=True).start()
log("Model yükleniyor, istekler ve API sunucusu hazırlanıyor...")
while True:
try:
import time
time.sleep(60)
except Exception as e:
log(f"Ana bekleme döngüsünde hata: {e}")
|