File size: 8,353 Bytes
6734e84
 
 
d0e6741
2a16a45
6734e84
06fedb7
0a5b12b
d0e6741
 
 
 
06fedb7
d0e6741
6734e84
 
 
77155e4
6734e84
a57565d
3422647
06fedb7
 
 
 
 
6734e84
77155e4
 
 
 
 
 
 
 
 
6734e84
 
06fedb7
 
6734e84
2149bc7
 
 
a57565d
 
 
 
 
 
 
 
 
 
 
 
 
3422647
 
 
a57565d
6734e84
a5cd092
b5c1d21
2a16a45
 
a57565d
 
 
 
 
 
 
 
 
 
 
b5c1d21
cc493ed
 
 
 
 
2149bc7
2a16a45
 
 
cc493ed
 
2a16a45
3422647
 
 
cc493ed
 
 
3422647
cc493ed
 
 
 
 
6734e84
 
 
d0e6741
2149bc7
06fedb7
 
2149bc7
d0e6741
 
 
 
1f2f347
2149bc7
06fedb7
 
2149bc7
 
3422647
 
01114e6
 
9ac1b3c
3422647
 
 
 
01114e6
 
3422647
 
 
 
 
 
 
 
 
 
01114e6
06fedb7
 
 
 
1a7401c
 
2149bc7
3422647
06fedb7
2149bc7
06fedb7
 
2149bc7
06fedb7
430e8dc
2149bc7
430e8dc
 
2149bc7
430e8dc
 
 
 
06fedb7
2149bc7
430e8dc
 
 
 
 
 
 
 
 
 
2149bc7
430e8dc
d2b7005
 
a57565d
 
 
2149bc7
 
 
a57565d
 
 
3422647
 
a57565d
06fedb7
2149bc7
430e8dc
2149bc7
430e8dc
6e08bcb
2149bc7
6e08bcb
 
2149bc7
430e8dc
6e08bcb
2149bc7
430e8dc
 
 
 
 
2149bc7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import threading
import uvicorn
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
from huggingface_hub import hf_hub_download
import zipfile
from datetime import datetime
import random

# ✅ Sabitler
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_BASE = "UcsTurkey/kanarya-750m-fixed"
FINE_TUNE_ZIP = "trained_model_000_000.zip"
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
CONFIDENCE_THRESHOLD = -1.5
USE_SAMPLING = False  # ✅ Sampling kapalı (test modu)
FALLBACK_ANSWERS = [
    "Bu konuda maalesef bilgim yok.",
    "Ne demek istediğinizi tam anlayamadım.",
    "Bu soruya şu an yanıt veremiyorum."
]

def log(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    try:
        print(f"[{timestamp}] {message}")
    except UnicodeEncodeError:
        safe_message = message.encode("utf-8", errors="replace").decode("utf-8", errors="ignore")
        print(f"[{timestamp}] {safe_message}")
    os.sys.stdout.flush()

app = FastAPI()
chat_history = []
model = None
tokenizer = None

class Message(BaseModel):
    user_input: str

def detect_environment():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    supports_bfloat16 = False
    gpu_name = "Yok"
    if device == "cuda":
        props = torch.cuda.get_device_properties(0)
        gpu_name = props.name
        major, _ = torch.cuda.get_device_capability(0)
        supports_bfloat16 = major >= 8
    return {
        "device": device,
        "gpu_name": gpu_name,
        "supports_bfloat16": supports_bfloat16,
        "expected_config": {
            "gpu": "Nvidia A100", "min_vram": "16GB", "cpu": "8 vCPU"
        }
    }

@app.get("/")
def health():
    return {"status": "ok"}

@app.get("/status")
def status():
    env = detect_environment()
    return {
        "device": env["device"],
        "gpu": env["gpu_name"],
        "supports_bfloat16": env["supports_bfloat16"],
        "expected_config": env["expected_config"],
        "note": "Sistem bu bilgilerle çalışıyor. bfloat16 desteklenmiyorsa performans sınırlı olabilir."
    }

@app.get("/start", response_class=HTMLResponse)
def root():
    return """
    <html>
    <head><title>Fine-Tune Chat</title></head>
    <body>
        <h2>Fine-tune Chat Test</h2>
        <textarea id=\"input\" rows=\"4\" cols=\"60\" placeholder=\"Bir şeyler yaz...\"></textarea><br><br>
        <button onclick=\"send()\">Gönder</button>
        <pre id=\"output\"></pre>
        <script>
            async function send() {
                const input = document.getElementById(\"input\").value;
                const res = await fetch('/chat', {
                    method: 'POST',
                    headers: { 'Content-Type': 'application/json' },
                    body: JSON.stringify({ user_input: input })
                });
                const data = await res.json();
                document.getElementById('output').innerText = data.answer || data.error || 'Hata oluştu.';
            }
        </script>
    </body>
    </html>
    """

@app.post("/chat")
def chat(msg: Message):
    try:
        log(f"Kullanıcı mesajı alındı: {msg}")
        global model, tokenizer
        if model is None or tokenizer is None:
            log("Hata: Model henüz yüklenmedi.")
            return {"error": "Model yüklenmedi. Lütfen birkaç saniye sonra tekrar deneyin."}
        user_input = msg.user_input.strip()
        if not user_input:
            return {"error": "Boş giriş"}
        full_prompt = f"SORU: {user_input}\nCEVAP:"
        log(f"Prompt: {full_prompt}")
        inputs = tokenizer(full_prompt, return_tensors="pt")
        inputs = {k: v.to(model.device) for k, v in inputs.items()}
        log(f"Tokenizer input_ids: {inputs['input_ids']}")
        log(f"input shape: {inputs['input_ids'].shape}")
        with torch.no_grad():
            if USE_SAMPLING:
                output = model.generate(
                    **inputs,
                    max_new_tokens=100,
                    do_sample=True,
                    temperature=0.7,
                    top_k=50,
                    top_p=0.95,
                    return_dict_in_generate=True,
                    output_scores=True,
                    suppress_tokens=[tokenizer.pad_token_id] if tokenizer.pad_token_id else None
                )
            else:
                output = model.generate(
                    **inputs,
                    max_new_tokens=100,
                    do_sample=False,
                    return_dict_in_generate=True,
                    output_scores=True,
                    suppress_tokens=[tokenizer.pad_token_id] if tokenizer.pad_token_id else None
                )
        generated_ids = output.sequences[0]
        generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
        answer = generated_text[len(full_prompt):].strip()
        if output.scores and len(output.scores) > 0:
            first_token_logit = output.scores[0][0]
            if torch.isnan(first_token_logit).any() or torch.isinf(first_token_logit).any():
                log("Geçersiz logit (NaN/Inf) tespit edildi, fallback cevabı gönderiliyor.")
                return {"answer": random.choice(FALLBACK_ANSWERS), "chat_history": chat_history}
            top_logit_score = torch.max(first_token_logit).item()
            log(f"İlk token logit skoru: {top_logit_score:.4f}")
            if top_logit_score < CONFIDENCE_THRESHOLD:
                fallback = random.choice(FALLBACK_ANSWERS)
                log(f"Düşük güven: fallback cevabı gönderiliyor: {fallback}")
                answer = fallback
        chat_history.append({"user": user_input, "bot": answer})
        log(f"Soru: {user_input} → Yanıt: {answer[:60]}...")
        return {"answer": answer, "chat_history": chat_history}
    except Exception as e:
        log(f"/chat sırasında hata oluştu: {e}")
        return {"error": str(e)}

def setup_model():
    try:
        global model, tokenizer
        log("Fine-tune zip indiriliyor...")
        zip_path = hf_hub_download(
            repo_id=FINE_TUNE_REPO,
            filename=FINE_TUNE_ZIP,
            repo_type="model",
            token=HF_TOKEN
        )
        extract_dir = "/app/extracted"
        os.makedirs(extract_dir, exist_ok=True)
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
            zip_ref.extractall(extract_dir)
        log("Zip başarıyla açıldı.")
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"))
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        env = detect_environment()
        device = env["device"]
        dtype = torch.bfloat16 if env["supports_bfloat16"] else (torch.float16 if device == "cuda" else torch.float32)
        log(f"Ortam: GPU = {env['gpu_name']}, Device = {device}, bfloat16 destekleniyor mu: {env['supports_bfloat16']}")
        log(f"Model {device.upper()} üzerinde {dtype} precision ile yüklenecek.")
        log("Beklenen minimum sistem konfigürasyonu:")
        log(f"- GPU: {env['expected_config']['gpu']}")
        log(f"- GPU Bellek: {env['expected_config']['min_vram']}")
        log(f"- CPU: {env['expected_config']['cpu']}")
        base_model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
        peft_model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output"))
        model = peft_model.model.to(device)
        model.eval()
        log(f"Model başarıyla yüklendi. dtype={next(model.parameters()).dtype}, device={next(model.parameters()).device}")
    except Exception as e:
        log(f"setup_model() sırasında hata oluştu: {e}")

def run_server():
    log("Uvicorn sunucusu başlatılıyor...")
    uvicorn.run(app, host="0.0.0.0", port=7860)

log("===== Application Startup =====")
threading.Thread(target=setup_model, daemon=True).start()
threading.Thread(target=run_server, daemon=True).start()
log("Model yükleniyor, istekler ve API sunucusu hazırlanıyor...")
while True:
    try:
        import time
        time.sleep(60)
    except Exception as e:
        log(f"Ana bekleme döngüsünde hata: {e}")