Spaces:
Running
Running
import torch | |
import traceback | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from log import log | |
from pydantic import BaseModel | |
class Message(BaseModel): | |
user_input: str | |
class LLMModel: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.eos_token_id = None | |
def setup(self, s_config, project_config): | |
try: | |
log("🧠 LLMModel setup() başladı") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
log(f"📡 Kullanılan cihaz: {device}") | |
model_base = project_config["model_base"] | |
if s_config.work_mode == "hfcloud": | |
token = s_config.get_auth_token() | |
log(f"📦 Hugging Face cloud modeli yükleniyor: {model_base}") | |
self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_auth_token=token, use_fast=False) | |
self.model = AutoModelForCausalLM.from_pretrained(model_base, use_auth_token=token, torch_dtype=torch.float32).to(device) | |
elif s_config.work_mode == "cloud": | |
log(f"📦 Diğer cloud ortamından model indiriliyor: {model_base}") | |
self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device) | |
elif s_config.work_mode == "on-prem": | |
log(f"📦 On-prem model path: {model_base}") | |
self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device) | |
else: | |
raise Exception(f"Bilinmeyen work_mode: {s_config.work_mode}") | |
self.tokenizer.pad_token = self.tokenizer.pad_token or self.tokenizer.eos_token | |
self.model.config.pad_token_id = self.tokenizer.pad_token_id | |
self.eos_token_id = self.tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0] | |
self.model.eval() | |
log("✅ LLMModel setup() başarıyla tamamlandı.") | |
except Exception as e: | |
log(f"❌ LLMModel setup() hatası: {e}") | |
traceback.print_exc() | |
async def generate_response(self, text, project_config): | |
messages = [{"role": "user", "content": text}] | |
encodeds = self.tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) | |
input_ids = encodeds.to(self.model.device) | |
attention_mask = (input_ids != self.tokenizer.pad_token_id).long() | |
with torch.no_grad(): | |
output = self.model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=128, | |
do_sample=project_config["use_sampling"], | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
return_dict_in_generate=True, | |
output_scores=True | |
) | |
if not project_config["use_sampling"]: | |
scores = torch.stack(output.scores, dim=1) | |
probs = torch.nn.functional.softmax(scores[0], dim=-1) | |
top_conf = probs.max().item() | |
else: | |
top_conf = None | |
decoded = self.tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip() | |
for tag in ["assistant", "<|im_start|>assistant"]: | |
start = decoded.find(tag) | |
if start != -1: | |
decoded = decoded[start + len(tag):].strip() | |
break | |
return decoded, top_conf | |