mistral7b / interence_test_with_intent_detection.py
ciyidogan's picture
Update interence_test_with_intent_detection.py
ea55d0f verified
raw
history blame
9.57 kB
# Fine-tune + Intent + LLM + System Prompt
import os
import json
import re
import torch
import asyncio
import shutil
import zipfile
import threading
import uvicorn
import time
import traceback
import random
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, HTMLResponse
from pydantic import BaseModel
from datetime import datetime
from datasets import Dataset
from huggingface_hub import hf_hub_download
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForCausalLM,
Trainer,
TrainingArguments,
pipeline
)
from peft import PeftModel
HF_TOKEN = os.getenv("HF_TOKEN")
MODEL_BASE = "malhajar/Mistral-7B-Instruct-v0.2-turkish"
USE_FINE_TUNE = False
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
FINE_TUNE_ZIP = "trained_model_000_009.zip"
USE_SAMPLING = False
CONFIDENCE_THRESHOLD = -1.5
FALLBACK_ANSWERS = [
"Bu konuda maalesef bilgim yok.",
"Ne demek istediğinizi tam anlayamadım.",
"Bu soruya şu an yanıt veremiyorum."
]
INTENT_MODEL_PATH = "intent_model"
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
USE_CUDA = torch.cuda.is_available()
INTENT_MODEL = None
INTENT_TOKENIZER = None
LABEL2ID = {}
model = None
tokenizer = None
chat_history = []
app = FastAPI()
def log(msg):
print(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}", flush=True)
def pattern_to_regex(pattern):
return re.sub(r"\{(\w+?)\}", r"(?P<\1>.+?)", pattern)
class ChatInput(BaseModel):
user_input: str
class TrainInput(BaseModel):
intents: list
@app.get("/")
def health():
return {"status": "ok"}
@app.get("/start", response_class=HTMLResponse)
def root():
return """
<html>
<body>
<h2>Mistral 7B Instruct Chat</h2>
<textarea id="input" rows="4" cols="60" placeholder="Write your instruction..."></textarea><br>
<button onclick="send()">Gönder</button><br><br>
<label>Model Cevabı:</label><br>
<textarea id="output" rows="10" cols="80" readonly style="white-space: pre-wrap;"></textarea>
<script>
async function send() {
const input = document.getElementById("input").value;
const res = await fetch('/chat', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ user_input: input })
});
const data = await res.json();
document.getElementById('output').value = data.answer || data.response || data.error || 'Hata oluştu.';
}
</script>
</body>
</html>
"""
@app.post("/train_intents")
def train_intents(train_input: TrainInput):
try:
intents = train_input.intents
log(f"🎯 Intent eğitimi başlatıldı. Intent sayısı: {len(intents)}")
texts, labels = [], []
label2id = {}
for idx, intent in enumerate(intents):
label2id[intent["name"]] = idx
for ex in intent["examples"]:
if "{" not in ex:
texts.append(ex)
labels.append(idx)
dataset = Dataset.from_dict({"text": texts, "label": labels})
tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
model = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID, num_labels=len(label2id))
def tokenize(batch):
return tokenizer(batch["text"], truncation=True, padding=True)
tokenized = dataset.map(tokenize, batched=True)
args = TrainingArguments("./intent_train_output", per_device_train_batch_size=4, num_train_epochs=3, logging_steps=10, save_strategy="no", report_to=[])
trainer = Trainer(model=model, args=args, train_dataset=tokenized)
trainer.train()
if os.path.exists(INTENT_MODEL_PATH):
shutil.rmtree(INTENT_MODEL_PATH)
model.save_pretrained(INTENT_MODEL_PATH)
tokenizer.save_pretrained(INTENT_MODEL_PATH)
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
json.dump(label2id, f)
log("✅ Intent modeli kaydedildi.")
return {"status": "ok", "message": "Intent modeli eğitildi ve kaydedildi."}
except Exception as e:
log(f"❌ Intent eğitimi hatası: {e}")
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.post("/load_intent_model")
def load_intent_model():
global INTENT_MODEL, INTENT_TOKENIZER, LABEL2ID
try:
if not os.path.exists(INTENT_MODEL_PATH):
return JSONResponse(content={"error": "intent_model klasörü bulunamadı."}, status_code=400)
INTENT_TOKENIZER = AutoTokenizer.from_pretrained(INTENT_MODEL_PATH)
INTENT_MODEL = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_PATH)
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json")) as f:
LABEL2ID = json.load(f)
log("✅ Intent modeli belleğe yüklendi.")
return {"status": "ok", "message": "Intent modeli yüklendi."}
except Exception as e:
log(f"❌ Intent modeli yükleme hatası: {e}")
return JSONResponse(content={"error": str(e)}, status_code=500)
async def detect_intent(text):
inputs = INTENT_TOKENIZER(text, return_tensors="pt")
outputs = INTENT_MODEL(**inputs)
pred_id = outputs.logits.argmax().item()
id2label = {v: k for k, v in LABEL2ID.items()}
return id2label[pred_id]
async def generate_response(text):
messages = [
{"role": "system", "content": "Sen yardımcı bir Türkçe yapay zeka asistanısın. Soruları açık ve doğru şekilde yanıtla."},
{"role": "user", "content": text}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
generate_args = {
"max_new_tokens": 512,
"return_dict_in_generate": True,
"output_scores": True,
"do_sample": USE_SAMPLING
}
if USE_SAMPLING:
generate_args.update({"temperature": 0.7, "top_p": 0.9, "top_k": 50})
with torch.no_grad():
output = model.generate(**inputs, **generate_args)
prompt_text = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
answer = decoded.replace(prompt_text, "").strip()
if output.scores and len(output.scores) > 0:
first_token_score = output.scores[0][0]
if torch.isnan(first_token_score).any() or torch.isinf(first_token_score).any():
log("⚠️ Geçersiz logit (NaN/Inf) tespit edildi.")
return random.choice(FALLBACK_ANSWERS)
max_score = torch.max(first_token_score).item()
log(f"🔍 İlk token skoru: {max_score:.4f}")
if max_score < CONFIDENCE_THRESHOLD:
return random.choice(FALLBACK_ANSWERS)
return answer
@app.post("/chat")
async def chat(input: ChatInput):
user_input = input.user_input.strip()
try:
if model is None or tokenizer is None:
return {"error": "Model veya tokenizer henüz yüklenmedi."}
if INTENT_MODEL:
intent_task = asyncio.create_task(detect_intent(user_input))
response_task = asyncio.create_task(generate_response(user_input))
intent = await intent_task
response = await response_task
log(f"✅ Intent: {intent}")
return {"intent": intent, "response": response}
else:
response = await generate_response(user_input)
log("💬 Intent modeli yok, yalnızca LLM cevabı verildi.")
return {"response": response}
except Exception as e:
log(f"❌ /chat hatası: {e}")
traceback.print_exc()
return JSONResponse(content={"error": str(e)}, status_code=500)
def setup_model():
global model, tokenizer
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float32
if USE_FINE_TUNE:
log("📦 Fine-tune zip indiriliyor...")
zip_path = hf_hub_download(repo_id=FINE_TUNE_REPO, filename=FINE_TUNE_ZIP, repo_type="model", token=HF_TOKEN)
extract_dir = "/app/extracted"
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_dir)
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"), use_fast=False)
base_model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output")).to(device)
else:
log("🧠 Ana model indiriliyor...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
model.eval()
log("✅ LLM model başarıyla yüklendi.")
except Exception as e:
log(f"❌ LLM model yükleme hatası: {e}")
traceback.print_exc()
def run():
log("===== Application Startup =====")
threading.Thread(target=setup_model, daemon=True).start()
threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=7860), daemon=True).start()
while True:
time.sleep(60)
# Uygulamayı çalıştır
run()