Update inference_test_turkcell_with_intents.py
Browse files
inference_test_turkcell_with_intents.py
CHANGED
@@ -7,25 +7,17 @@ from peft import PeftModel
|
|
7 |
from datasets import Dataset
|
8 |
from datetime import datetime
|
9 |
|
10 |
-
# === Ortam
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
13 |
os.environ["TORCH_HOME"] = "/app/.torch_cache"
|
14 |
os.makedirs("/app/.torch_cache", exist_ok=True)
|
15 |
|
16 |
-
# === Ayarlar
|
17 |
MODEL_BASE = "TURKCELL/Turkcell-LLM-7b-v1"
|
18 |
USE_FINE_TUNE = False
|
19 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
20 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
21 |
USE_SAMPLING = False
|
22 |
-
GENERATION_CONFIDENCE_THRESHOLD = -1.5
|
23 |
-
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
24 |
-
FALLBACK_ANSWERS = [
|
25 |
-
"Bu konuda maalesef bilgim yok.",
|
26 |
-
"Ne demek istediğinizi tam anlayamadım.",
|
27 |
-
"Bu soruya şu an yanıt veremiyorum."
|
28 |
-
]
|
29 |
|
30 |
INTENT_MODEL_PATH = "intent_model"
|
31 |
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
@@ -34,7 +26,16 @@ INTENT_TOKENIZER = None
|
|
34 |
LABEL2ID = {}
|
35 |
INTENT_DEFINITIONS = {}
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
app = FastAPI()
|
39 |
chat_history = []
|
40 |
model = None
|
@@ -75,6 +76,153 @@ def root():
|
|
75 |
</body></html>
|
76 |
"""
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
@app.post("/chat")
|
79 |
async def chat(msg: Message):
|
80 |
user_input = msg.user_input.strip()
|
@@ -85,44 +233,47 @@ async def chat(msg: Message):
|
|
85 |
if INTENT_MODEL:
|
86 |
intent_task = asyncio.create_task(detect_intent(user_input))
|
87 |
response_task = asyncio.create_task(generate_response(user_input))
|
88 |
-
intent = await intent_task
|
89 |
-
|
90 |
-
if intent
|
91 |
-
log("🟡 Intent confidence düşük. Ana modele yönlendiriliyor.")
|
92 |
-
response = await response_task
|
93 |
-
if isinstance(response, dict) and response.get("score", 0) < GENERATION_CONFIDENCE_THRESHOLD:
|
94 |
-
return {"response": random.choice(FALLBACK_ANSWERS)}
|
95 |
-
return {"response": response if isinstance(response, str) else response.get("text", "")}
|
96 |
-
|
97 |
-
if intent in INTENT_DEFINITIONS:
|
98 |
result = execute_intent(intent, user_input)
|
99 |
return result
|
100 |
else:
|
101 |
-
response = await response_task
|
102 |
-
|
|
|
|
|
103 |
else:
|
104 |
-
response = await generate_response(user_input)
|
105 |
-
if
|
106 |
return {"response": random.choice(FALLBACK_ANSWERS)}
|
107 |
-
return {"response": response
|
108 |
|
109 |
except Exception as e:
|
110 |
traceback.print_exc()
|
111 |
return JSONResponse(content={"error": str(e)}, status_code=500)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
logits = outputs.logits
|
117 |
-
probs = torch.nn.functional.softmax(logits, dim=1)
|
118 |
-
pred_id = logits.argmax().item()
|
119 |
-
confidence = probs[0][pred_id].item()
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
7 |
from datasets import Dataset
|
8 |
from datetime import datetime
|
9 |
|
10 |
+
# === Ortam ve Ayarlar ===
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
13 |
os.environ["TORCH_HOME"] = "/app/.torch_cache"
|
14 |
os.makedirs("/app/.torch_cache", exist_ok=True)
|
15 |
|
|
|
16 |
MODEL_BASE = "TURKCELL/Turkcell-LLM-7b-v1"
|
17 |
USE_FINE_TUNE = False
|
18 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
19 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
20 |
USE_SAMPLING = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
INTENT_MODEL_PATH = "intent_model"
|
23 |
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
|
|
26 |
LABEL2ID = {}
|
27 |
INTENT_DEFINITIONS = {}
|
28 |
|
29 |
+
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
30 |
+
LLM_CONFIDENCE_THRESHOLD = 0.2
|
31 |
+
TRAIN_CONFIDENCE_THRESHOLD = 0.7
|
32 |
+
FALLBACK_ANSWERS = [
|
33 |
+
"Bu konuda maalesef bilgim yok.",
|
34 |
+
"Ne demek istediğinizi tam anlayamadım.",
|
35 |
+
"Bu soruya şu an yanıt veremiyorum."
|
36 |
+
]
|
37 |
+
|
38 |
+
# === FastAPI ===
|
39 |
app = FastAPI()
|
40 |
chat_history = []
|
41 |
model = None
|
|
|
76 |
</body></html>
|
77 |
"""
|
78 |
|
79 |
+
@app.post("/train_intents", status_code=202)
|
80 |
+
def train_intents(train_input: TrainInput):
|
81 |
+
global INTENT_DEFINITIONS
|
82 |
+
log("📥 POST /train_intents çağrıldı.")
|
83 |
+
intents = train_input.intents
|
84 |
+
INTENT_DEFINITIONS = {intent["name"]: intent for intent in intents}
|
85 |
+
threading.Thread(target=lambda: background_training(intents), daemon=True).start()
|
86 |
+
return {"status": "accepted", "message": "Intent eğitimi arka planda başlatıldı."}
|
87 |
+
|
88 |
+
def background_training(intents):
|
89 |
+
try:
|
90 |
+
log("🔧 Intent eğitimi başlatıldı...")
|
91 |
+
texts, labels, label2id = [], [], {}
|
92 |
+
for idx, intent in enumerate(intents):
|
93 |
+
label2id[intent["name"]] = idx
|
94 |
+
for ex in intent["examples"]:
|
95 |
+
texts.append(ex)
|
96 |
+
labels.append(idx)
|
97 |
+
|
98 |
+
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
100 |
+
config = AutoConfig.from_pretrained(INTENT_MODEL_ID)
|
101 |
+
config.problem_type = "single_label_classification"
|
102 |
+
config.num_labels = len(label2id)
|
103 |
+
model = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID, config=config)
|
104 |
+
|
105 |
+
tokenized_data = {"input_ids": [], "attention_mask": [], "label": []}
|
106 |
+
for row in dataset:
|
107 |
+
out = tokenizer(row["text"], truncation=True, padding="max_length", max_length=128)
|
108 |
+
tokenized_data["input_ids"].append(out["input_ids"])
|
109 |
+
tokenized_data["attention_mask"].append(out["attention_mask"])
|
110 |
+
tokenized_data["label"].append(row["label"])
|
111 |
+
|
112 |
+
tokenized = Dataset.from_dict(tokenized_data)
|
113 |
+
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
114 |
+
|
115 |
+
output_dir = "/app/intent_train_output"
|
116 |
+
os.makedirs(output_dir, exist_ok=True)
|
117 |
+
trainer = Trainer(
|
118 |
+
model=model,
|
119 |
+
args=TrainingArguments(output_dir, per_device_train_batch_size=4, num_train_epochs=3, logging_steps=10, save_strategy="no", report_to=[]),
|
120 |
+
train_dataset=tokenized,
|
121 |
+
data_collator=default_data_collator
|
122 |
+
)
|
123 |
+
trainer.train()
|
124 |
+
|
125 |
+
# Raporlama
|
126 |
+
predictions = model(tokenized["input_ids"]).logits.argmax(dim=-1).tolist()
|
127 |
+
actuals = tokenized["label"]
|
128 |
+
counts = {}
|
129 |
+
correct = {}
|
130 |
+
for pred, actual in zip(predictions, actuals):
|
131 |
+
intent = list(label2id.keys())[list(label2id.values()).index(actual)]
|
132 |
+
counts[intent] = counts.get(intent, 0) + 1
|
133 |
+
if pred == actual:
|
134 |
+
correct[intent] = correct.get(intent, 0) + 1
|
135 |
+
|
136 |
+
for intent, total in counts.items():
|
137 |
+
accuracy = correct.get(intent, 0) / total
|
138 |
+
log(f"📊 Intent '{intent}' doğruluk: {accuracy:.2f} — {total} örnek")
|
139 |
+
if accuracy < TRAIN_CONFIDENCE_THRESHOLD or total < 5:
|
140 |
+
log(f"⚠️ Yetersiz performanslı intent: '{intent}' — Doğruluk: {accuracy:.2f}, Örnek: {total}")
|
141 |
+
|
142 |
+
if os.path.exists(INTENT_MODEL_PATH):
|
143 |
+
shutil.rmtree(INTENT_MODEL_PATH)
|
144 |
+
model.save_pretrained(INTENT_MODEL_PATH)
|
145 |
+
tokenizer.save_pretrained(INTENT_MODEL_PATH)
|
146 |
+
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
|
147 |
+
json.dump(label2id, f)
|
148 |
+
|
149 |
+
log("✅ Intent eğitimi tamamlandı ve model kaydedildi.")
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
log(f"❌ Intent eğitimi hatası: {e}")
|
153 |
+
traceback.print_exc()
|
154 |
+
|
155 |
+
@app.post("/load_intent_model")
|
156 |
+
def load_intent_model():
|
157 |
+
global INTENT_MODEL, INTENT_TOKENIZER, LABEL2ID
|
158 |
+
try:
|
159 |
+
INTENT_TOKENIZER = AutoTokenizer.from_pretrained(INTENT_MODEL_PATH)
|
160 |
+
INTENT_MODEL = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_PATH)
|
161 |
+
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json")) as f:
|
162 |
+
LABEL2ID = json.load(f)
|
163 |
+
return {"status": "ok", "message": "Intent modeli yüklendi."}
|
164 |
+
except Exception as e:
|
165 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
166 |
+
|
167 |
+
async def detect_intent(text):
|
168 |
+
inputs = INTENT_TOKENIZER(text, return_tensors="pt")
|
169 |
+
outputs = INTENT_MODEL(**inputs)
|
170 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
171 |
+
confidence, pred_id = torch.max(probs, dim=-1)
|
172 |
+
id2label = {v: k for k, v in LABEL2ID.items()}
|
173 |
+
return id2label[pred_id.item()], confidence.item()
|
174 |
+
|
175 |
+
async def generate_response(text):
|
176 |
+
messages = [{"role": "user", "content": text}]
|
177 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
|
178 |
+
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
179 |
+
|
180 |
+
input_ids = encodeds.to(model.device)
|
181 |
+
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
182 |
+
|
183 |
+
with torch.no_grad():
|
184 |
+
output = model.generate(
|
185 |
+
input_ids=input_ids,
|
186 |
+
attention_mask=attention_mask,
|
187 |
+
max_new_tokens=128,
|
188 |
+
do_sample=USE_SAMPLING,
|
189 |
+
eos_token_id=eos_token,
|
190 |
+
pad_token_id=tokenizer.pad_token_id,
|
191 |
+
return_dict_in_generate=True,
|
192 |
+
output_scores=True
|
193 |
+
)
|
194 |
+
|
195 |
+
if not USE_SAMPLING:
|
196 |
+
scores = torch.stack(output.scores, dim=1)
|
197 |
+
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
198 |
+
top_conf = probs.max().item()
|
199 |
+
else:
|
200 |
+
top_conf = None
|
201 |
+
|
202 |
+
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
|
203 |
+
for tag in ["assistant", "<|im_start|>assistant"]:
|
204 |
+
start = decoded.find(tag)
|
205 |
+
if start != -1:
|
206 |
+
decoded = decoded[start + len(tag):].strip()
|
207 |
+
break
|
208 |
+
return decoded, top_conf
|
209 |
+
|
210 |
+
def extract_parameters(variables_list, user_input):
|
211 |
+
for pattern in variables_list:
|
212 |
+
regex = re.sub(r"(\w+):\{(.+?)\}", r"(?P<\1>.+?)", pattern)
|
213 |
+
match = re.match(regex, user_input)
|
214 |
+
if match:
|
215 |
+
return [{"key": k, "value": v} for k, v in match.groupdict().items()]
|
216 |
+
return []
|
217 |
+
|
218 |
+
def execute_intent(intent_name, user_input):
|
219 |
+
if intent_name in INTENT_DEFINITIONS:
|
220 |
+
definition = INTENT_DEFINITIONS[intent_name]
|
221 |
+
variables = extract_parameters(definition.get("variables", []), user_input)
|
222 |
+
log(f"🚀 execute_intent('{intent_name}', {variables})")
|
223 |
+
return {"intent": intent_name, "parameters": variables}
|
224 |
+
return {"intent": intent_name, "parameters": []}
|
225 |
+
|
226 |
@app.post("/chat")
|
227 |
async def chat(msg: Message):
|
228 |
user_input = msg.user_input.strip()
|
|
|
233 |
if INTENT_MODEL:
|
234 |
intent_task = asyncio.create_task(detect_intent(user_input))
|
235 |
response_task = asyncio.create_task(generate_response(user_input))
|
236 |
+
intent, intent_conf = await intent_task
|
237 |
+
log(f"🎯 Intent: {intent} (conf={intent_conf:.2f})")
|
238 |
+
if intent_conf > INTENT_CONFIDENCE_THRESHOLD and intent in INTENT_DEFINITIONS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
result = execute_intent(intent, user_input)
|
240 |
return result
|
241 |
else:
|
242 |
+
response, response_conf = await response_task
|
243 |
+
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
244 |
+
return {"response": random.choice(FALLBACK_ANSWERS)}
|
245 |
+
return {"response": response}
|
246 |
else:
|
247 |
+
response, response_conf = await generate_response(user_input)
|
248 |
+
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
249 |
return {"response": random.choice(FALLBACK_ANSWERS)}
|
250 |
+
return {"response": response}
|
251 |
|
252 |
except Exception as e:
|
253 |
traceback.print_exc()
|
254 |
return JSONResponse(content={"error": str(e)}, status_code=500)
|
255 |
|
256 |
+
def log(message):
|
257 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
258 |
+
print(f"[{timestamp}] {message}", flush=True)
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
def setup_model():
|
261 |
+
global model, tokenizer, eos_token_id
|
262 |
+
try:
|
263 |
+
log("🧠 setup_model() başladı")
|
264 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
265 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
266 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
|
267 |
+
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
268 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
269 |
+
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
270 |
+
model.eval()
|
271 |
+
log("✅ Ana model yüklendi")
|
272 |
+
except Exception as e:
|
273 |
+
log(f"❌ setup_model() hatası: {e}")
|
274 |
+
traceback.print_exc()
|
275 |
|
276 |
+
threading.Thread(target=setup_model, daemon=True).start()
|
277 |
+
threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=7860), daemon=True).start()
|
278 |
+
while True:
|
279 |
+
time.sleep(60)
|