Spaces:
Running
Running
File size: 5,180 Bytes
b701d44 5b9baff 419d02f b701d44 0d4b0fc 419d02f 5b9baff 419d02f fabf362 419d02f fabf362 419d02f 2ebc710 fabf362 2ebc710 419d02f 2ebc710 ab9088f 419d02f fabf362 5b9baff 419d02f ab9088f 419d02f fabf362 419d02f 5a0deb7 419d02f 5a0deb7 419d02f ab9088f 419d02f 5b9baff 419d02f 5b9baff b701d44 5b9baff b701d44 5b9baff 419d02f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import json
import base64
from io import BytesIO
from PIL import Image
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from transformers import (
AutoProcessor,
LayoutLMv3Model,
T5ForConditionalGeneration,
AutoTokenizer
)
# ββ 1) MODEL SETUP βββββββββββββββββββββββββββββββββββββββββββββββββββββ
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
# Processor for LayoutLMv3
processor = AutoProcessor.from_pretrained(
repo,
subfolder="preprocessor",
apply_ocr=False
)
# LayoutLMv3 encoder
layout_model = LayoutLMv3Model.from_pretrained(repo)
layout_model.eval()
# T5 decoder & tokenizer
t5_model = T5ForConditionalGeneration.from_pretrained(repo)
t5_model.eval()
tokenizer = AutoTokenizer.from_pretrained(
repo, subfolder="preprocessor"
)
# Ensure decoder_start_token_id is set
if t5_model.config.decoder_start_token_id is None:
# Fallback to bos_token_id if present
t5_model.config.decoder_start_token_id = tokenizer.bos_token_id
# Projection head: load from checkpoint
ckpt_file = hf_hub_download(repo_id=repo, filename="pytorch_model.bin")
ckpt = torch.load(ckpt_file, map_location="cpu")
proj_state= ckpt["projection"]
projection = torch.nn.Sequential(
torch.nn.Linear(768, t5_model.config.d_model),
torch.nn.LayerNorm(t5_model.config.d_model),
torch.nn.GELU()
)
projection.load_state_dict(proj_state)
projection.eval()
# Move models to CPU (Spaces are CPU-only)
device = torch.device("cpu")
layout_model.to(device)
t5_model.to(device)
projection.to(device)
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
# Processor for LayoutLMv3
processor = AutoProcessor.from_pretrained(
repo,
subfolder="preprocessor",
apply_ocr=False
)
# LayoutLMv3 encoder
layout_model = LayoutLMv3Model.from_pretrained(repo)
layout_model.eval()
# T5 decoder & tokenizer
t5_model = T5ForConditionalGeneration.from_pretrained(repo)
t5_model.eval()
tokenizer = AutoTokenizer.from_pretrained(
repo, subfolder="preprocessor"
)
# Projection head: load from checkpoint
ckpt_file = hf_hub_download(repo_id=repo, filename="pytorch_model.bin")
ckpt = torch.load(ckpt_file, map_location="cpu")
proj_state= ckpt["projection"]
projection = torch.nn.Sequential(
torch.nn.Linear(768, t5_model.config.d_model),
torch.nn.LayerNorm(t5_model.config.d_model),
torch.nn.GELU()
)
projection.load_state_dict(proj_state)
projection.eval()
# Move models to CPU (Spaces are CPU-only)
device = torch.device("cpu")
layout_model.to(device)
t5_model.to(device)
projection.to(device)
# ββ 2) INFERENCE FUNCTION βββββββββββββββββββββββββββββββββββββββββββββ
def infer(image_path, json_file):
img_name = os.path.basename(image_path)
# 2.a) Load NDJSON file (one JSON object per line)
data = []
with open(json_file.name, "r", encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
data.append(json.loads(line))
# 2.b) Find entry matching uploaded image
entry = next((e for e in data if e.get("img_name") == img_name), None)
if entry is None:
return f"β No JSON entry found for image '{img_name}'"
words = entry.get("src_word_list", [])
boxes = entry.get("src_wordbox_list", [])
# 2.c) Open and preprocess the image + tokens + boxes
img = Image.open(image_path).convert("RGB")
encoding = processor(
[img], [words], boxes=[boxes],
return_tensors="pt", padding=True, truncation=True
)
pixel_values = encoding.pixel_values.to(device)
input_ids = encoding.input_ids.to(device)
attention_mask = encoding.attention_mask.to(device)
bbox = encoding.bbox.to(device)
# 2.d) Forward pass
with torch.no_grad():
# LayoutLMv3 encoding
lm_out = layout_model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
bbox=bbox
)
seq_len = input_ids.size(1)
text_feats = lm_out.last_hidden_state[:, :seq_len, :]
# Projection β T5 decoding
proj_feats = projection(text_feats)
gen_ids = t5_model.generate(
inputs_embeds=proj_feats,
attention_mask=attention_mask,
max_length=512,
decoder_start_token_id=t5_model.config.decoder_start_token_id
)
# Decode to text
result = tokenizer.batch_decode(
gen_ids, skip_special_tokens=True
)[0]
return result
# ββ 3) GRADIO UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
demo = gr.Interface(
fn=infer,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.File(label="Upload JSON (NDJSON)")
],
outputs="text",
title="OCR Reorder Pipeline"
)
if __name__ == "__main__":
demo.launch(share=True)
|