Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pickle | |
import pandas as pd | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.linear_model import LogisticRegression, Perceptron | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score | |
import os | |
# Load or train models | |
model_files = ["scaler.pkl", "logistic_regression.pkl", "perceptron.pkl"] | |
# Check if all model files exist | |
if all(os.path.exists(file) for file in model_files): | |
try: | |
with open("scaler.pkl", "rb") as scaler_file: | |
scaler = pickle.load(scaler_file) | |
with open("logistic_regression.pkl", "rb") as model_file: | |
logistic_regression = pickle.load(model_file) | |
with open("perceptron.pkl", "rb") as model_file: | |
perceptron = pickle.load(model_file) | |
except Exception as e: | |
print(f"Error loading models: {e}") | |
exit() | |
else: | |
print("Training models from scratch...") | |
# Load dataset | |
df = pd.read_excel("Student-Employability-Datasets.xlsx", sheet_name="Data") | |
# Prepare dataset | |
X = df.iloc[:, 1:-1].values # Select all feature columns | |
y = (df["CLASS"] == "Employable").astype(int) # Convert to binary labels | |
# Train-test split | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Feature scaling | |
scaler = StandardScaler() | |
X_train_scaled = scaler.fit_transform(X_train) | |
X_test_scaled = scaler.transform(X_test) | |
# Train models | |
logistic_regression = LogisticRegression(random_state=42) | |
logistic_regression.fit(X_train_scaled, y_train) | |
perceptron = Perceptron(random_state=42) | |
perceptron.fit(X_train_scaled, y_train) | |
# Save trained models | |
with open("scaler.pkl", "wb") as scaler_file: | |
pickle.dump(scaler, scaler_file) | |
with open("logistic_regression.pkl", "wb") as model_file: | |
pickle.dump(logistic_regression, model_file) | |
with open("perceptron.pkl", "wb") as model_file: | |
pickle.dump(perceptron, model_file) | |
print("Training complete. Models saved.") | |
# Employability prediction function | |
def predict_employability(name, ga, mos, pc, ma, sc, api, cs, model_choice): | |
try: | |
if not name: | |
name = "The candidate" | |
input_data = np.array([[ga, mos, pc, ma, sc, api, cs]]) | |
# Ensure scaler is correctly loaded | |
if scaler is None: | |
return "Error: Scaler not loaded properly." | |
# Transform input | |
input_scaled = scaler.transform(input_data) | |
# Select model and make prediction | |
if model_choice == "Logistic Regression": | |
prediction = logistic_regression.predict(input_scaled) | |
elif model_choice == "Perceptron": | |
prediction = perceptron.predict(input_scaled) | |
else: | |
return "Error: Invalid model selection." | |
# Return result | |
if prediction[0] == 1: | |
return f"{name} is Employable π" | |
else: | |
return f"{name} is Less Employable - Work Hard! πͺ" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Gradio UI | |
with gr.Blocks() as app: | |
gr.Markdown("# π Employability Evaluation System") | |
with gr.Row(): | |
with gr.Column(): | |
name = gr.Textbox(label="Name") | |
ga = gr.Slider(1, 5, step=1, label="General Appearance") | |
mos = gr.Slider(1, 5, step=1, label="Manner of Speaking") | |
pc = gr.Slider(1, 5, step=1, label="Physical Condition") | |
ma = gr.Slider(1, 5, step=1, label="Mental Alertness") | |
sc = gr.Slider(1, 5, step=1, label="Self Confidence") | |
api = gr.Slider(1, 5, step=1, label="Ability to Present Ideas") | |
cs = gr.Slider(1, 5, step=1, label="Communication Skills") | |
model_choice = gr.Radio(["Logistic Regression", "Perceptron"], label="Select Model") | |
predict_btn = gr.Button("Get Evaluation") | |
with gr.Column(): | |
result_output = gr.Textbox(label="Employability Prediction") | |
# Button Click Event | |
predict_btn.click( | |
fn=predict_employability, | |
inputs=[name, ga, mos, pc, ma, sc, api, cs, model_choice], | |
outputs=[result_output] | |
) | |
# Launch the app | |
app.launch(server_port=7860, debug=True, share=True) |