Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
from huggingface_hub import login | |
import pandas as pd | |
# 🔹 OPTIONAL: Authenticate if using a gated/private model | |
# login(token="your_huggingface_token") # Uncomment and replace if needed | |
# ✅ Use a Free Model (Mistral-7B-v0.1 OR Gemma-2B) | |
MODEL_NAME = "tiiuae/falcon-7b-instruct" # Open-source alternative # Publicly available | |
# MODEL_NAME = "google/gemma-2b" # Alternative (smaller but open-access) | |
# Load the text generation model | |
llm_pipeline = pipeline("text-generation", model=MODEL_NAME, device_map="auto") | |
def analyze_spending_pattern(df): | |
""" | |
Analyze the user's spending behavior. | |
""" | |
prompt = f""" | |
Here is the user's spending data: | |
{df.to_string(index=False)} | |
Identify spending trends, categorize expenses, and highlight areas for cost-saving. | |
""" | |
response = llm_pipeline(prompt, max_length=200, do_sample=True) | |
return response[0]['generated_text'] | |
def get_financial_advice(df): | |
""" | |
Provide personalized financial recommendations. | |
""" | |
prompt = f""" | |
Given the following transaction history: | |
{df.to_string(index=False)} | |
Provide personalized recommendations to reduce expenses and improve financial health. | |
""" | |
response = llm_pipeline(prompt, max_length=200, do_sample=True) | |
return response[0]['generated_text'] |