Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,446 Bytes
f1068cb 4dcee53 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 4dcee53 3a45273 4dcee53 3a45273 4dcee53 3a45273 f1068cb 4dcee53 f1068cb 4dcee53 3a45273 4dcee53 3a45273 f1068cb 3a45273 4dcee53 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 3a45273 f1068cb 4dcee53 f1068cb 3a45273 f1068cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 |
#!/usr/bin/env python
import os
import re
import tempfile
import gc # Added garbage collector
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import base64
import logging
import time
from urllib.parse import quote # Added for URL encoding
import importlib # For dynamic import
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
# CSV/TXT/PDF analysis
import pandas as pd
import PyPDF2
# =============================================================================
# (New) Image API related functions
# =============================================================================
from gradio_client import Client
API_URL = "http://211.233.58.201:7896"
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s'
)
def test_api_connection() -> str:
"""Test API server connection"""
try:
client = Client(API_URL)
return "API connection successful: Operating normally"
except Exception as e:
logging.error(f"API connection test failed: {e}")
return f"API connection failed: {e}"
def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float):
"""Image generation function (flexible return types)"""
if not prompt:
return None, "Error: A prompt is required."
try:
logging.info(f"Calling image generation API with prompt: {prompt}")
client = Client(API_URL)
result = client.predict(
prompt=prompt,
width=int(width),
height=int(height),
guidance=float(guidance),
inference_steps=int(inference_steps),
seed=int(seed),
do_img2img=False,
init_image=None,
image2image_strength=0.8,
resize_img=True,
api_name="/generate_image"
)
logging.info(f"Image generation result: {type(result)}, length: {len(result) if isinstance(result, (list, tuple)) else 'unknown'}")
# Handle cases where the result is a tuple or list
if isinstance(result, (list, tuple)) and len(result) > 0:
image_data = result[0] # The first element is the image data
seed_info = result[1] if len(result) > 1 else "Unknown seed"
return image_data, seed_info
else:
# When a single value is returned
return result, "Unknown seed"
except Exception as e:
logging.error(f"Image generation failed: {str(e)}")
return None, f"Error: {str(e)}"
def fix_base64_padding(data):
"""Fix the padding of a Base64 string."""
if isinstance(data, bytes):
data = data.decode('utf-8')
if "base64," in data:
data = data.split("base64,", 1)[1]
missing_padding = len(data) % 4
if missing_padding:
data += '=' * (4 - missing_padding)
return data
def clear_cuda_cache():
"""Explicitly clear the CUDA cache."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
def extract_keywords(text: str, top_k: int = 5) -> str:
"""Simple keyword extraction: only keep English, Korean, numbers, and spaces."""
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
tokens = text.split()
return " ".join(tokens[:top_k])
def do_web_search(query: str) -> str:
"""Call the SerpHouse LIVE API to return Markdown formatted search results"""
try:
url = "https://api.serphouse.com/serp/live"
params = {
"q": query,
"domain": "google.com",
"serp_type": "web",
"device": "desktop",
"lang": "en",
"num": "20"
}
headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"}
logger.info(f"Calling SerpHouse API with query: {query}")
response = requests.get(url, headers=headers, params=params, timeout=60)
response.raise_for_status()
data = response.json()
results = data.get("results", {})
organic = None
if isinstance(results, dict) and "organic" in results:
organic = results["organic"]
elif isinstance(results, dict) and "results" in results:
if isinstance(results["results"], dict) and "organic" in results["results"]:
organic = results["results"]["organic"]
elif "organic" in data:
organic = data["organic"]
if not organic:
logger.warning("Organic results not found in response.")
return "No web search results available or the API response structure is unexpected."
max_results = min(20, len(organic))
limited_organic = organic[:max_results]
summary_lines = []
for idx, item in enumerate(limited_organic, start=1):
title = item.get("title", "No Title")
link = item.get("link", "#")
snippet = item.get("snippet", "No Description")
displayed_link = item.get("displayed_link", link)
summary_lines.append(
f"### Result {idx}: {title}\n\n"
f"{snippet}\n\n"
f"**Source**: [{displayed_link}]({link})\n\n"
f"---\n"
)
instructions = """
# Web Search Results
Below are the search results. Use this information to answer the query:
1. Refer to each result's title, description, and source link.
2. In your answer, explicitly cite the source of any used information (e.g., "[Source Title](link)").
3. Include the actual source links in your response.
4. Synthesize information from multiple sources.
5. At the end include a "References:" section listing the main source links.
"""
return instructions + "\n".join(summary_lines)
except Exception as e:
logger.error(f"Web search failed: {e}")
return f"Web search failed: {str(e)}"
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager"
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
def analyze_csv_file(path: str) -> str:
try:
df = pd.read_csv(path)
if df.shape[0] > 50 or df.shape[1] > 10:
df = df.iloc[:50, :10]
df_str = df.to_string()
if len(df_str) > MAX_CONTENT_CHARS:
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
except Exception as e:
return f"CSV file read failed ({os.path.basename(path)}): {str(e)}"
def analyze_txt_file(path: str) -> str:
try:
with open(path, "r", encoding="utf-8") as f:
text = f.read()
if len(text) > MAX_CONTENT_CHARS:
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
except Exception as e:
return f"TXT file read failed ({os.path.basename(path)}): {str(e)}"
def pdf_to_markdown(pdf_path: str) -> str:
text_chunks = []
try:
with open(pdf_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
max_pages = min(5, len(reader.pages))
for page_num in range(max_pages):
page_text = reader.pages[page_num].extract_text() or ""
page_text = page_text.strip()
if page_text:
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
if len(reader.pages) > max_pages:
text_chunks.append(f"\n...(Displaying only {max_pages} out of {len(reader.pages)} pages)...")
except Exception as e:
return f"PDF file read failed ({os.path.basename(pdf_path)}): {str(e)}"
full_text = "\n".join(text_chunks)
if len(full_text) > MAX_CONTENT_CHARS:
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if isinstance(item["content"], list) and len(item["content"]) > 0:
file_path = item["content"][0]
if isinstance(file_path, str):
if file_path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
media_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")]
new_image_count, new_video_count = count_files_in_new_message(media_files)
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video file is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and a video is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("The <image> tag cannot be used together with a video file.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload a maximum of {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"]:
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
image_tag_count = message["text"].count("<image>")
if image_tag_count != len(image_files):
gr.Warning("The number of <image> tags does not match the number of image files provided.")
return False
return True
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(int(fps), int(total_frames / 10))
frames = []
for i in range(0, total_frames, frame_interval):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
if len(frames) >= 5:
break
vidcap.release()
return frames
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
content = []
temp_files = []
frames = downsample_video(video_path)
for pil_image, timestamp in frames:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
temp_files.append(temp_file.name)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
return content, temp_files
def process_interleaved_images(message: dict) -> list[dict]:
parts = re.split(r"(<image>)", message["text"])
content = []
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
image_index = 0
for part in parts:
if part == "<image>" and image_index < len(image_files):
content.append({"type": "image", "url": image_files[image_index]})
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
else:
if isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
return content
def is_image_file(file_path: str) -> bool:
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
def is_video_file(file_path: str) -> bool:
return file_path.endswith(".mp4")
def is_document_file(file_path: str) -> bool:
return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt")
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
temp_files = []
if not message["files"]:
return [{"type": "text", "text": message["text"]}], temp_files
video_files = [f for f in message["files"] if is_video_file(f)]
image_files = [f for f in message["files"] if is_image_file(f)]
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
content_list = [{"type": "text", "text": message["text"]}]
for csv_path in csv_files:
content_list.append({"type": "text", "text": analyze_csv_file(csv_path)})
for txt_path in txt_files:
content_list.append({"type": "text", "text": analyze_txt_file(txt_path)})
for pdf_path in pdf_files:
content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)})
if video_files:
video_content, video_temp_files = process_video(video_files[0])
content_list += video_content
temp_files.extend(video_temp_files)
return content_list, temp_files
if "<image>" in message["text"] and image_files:
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
if content_list and content_list[0]["type"] == "text":
content_list = content_list[1:]
return interleaved_content + content_list, temp_files
else:
for img_path in image_files:
content_list.append({"type": "image", "url": img_path})
return content_list, temp_files
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
elif isinstance(content, list) and len(content) > 0:
file_path = content[0]
if is_image_file(file_path):
current_user_content.append({"type": "image", "url": file_path})
else:
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
return messages
def _model_gen_with_oom_catch(**kwargs):
try:
model.generate(**kwargs)
except torch.cuda.OutOfMemoryError:
raise RuntimeError("[OutOfMemoryError] Insufficient GPU memory.")
finally:
clear_cuda_cache()
# =============================================================================
# JSON ๊ธฐ๋ฐ ํจ์ ๋ชฉ๋ก ๋ก๋
# =============================================================================
def load_function_definitions(json_path="functions.json"):
"""
๋ก์ปฌ JSON ํ์ผ์์ ํจ์ ์ ์ ๋ชฉ๋ก์ ๋ก๋ํ์ฌ ๋ฐํ.
"""
try:
with open(json_path, "r", encoding="utf-8") as f:
data = json.load(f)
func_dict = {}
for entry in data:
func_name = entry["name"]
func_dict[func_name] = entry
return func_dict
except Exception as e:
logger.error(f"Failed to load function definitions from JSON: {e}")
return {}
FUNCTION_DEFINITIONS = load_function_definitions("functions.json")
def handle_function_call(text: str) -> str:
"""
Detects and processes function call blocks in the text using the JSON-based approach.
The model is expected to produce something like:
```tool_code
get_stock_price(ticker="AAPL")
```
or
```tool_code
get_product_name_by_PID(PID="807ZPKBL9V")
```
"""
import re
pattern = r"```tool_code\s*(.*?)\s*```"
match = re.search(pattern, text, re.DOTALL)
if not match:
return ""
code_block = match.group(1).strip()
func_match = re.match(r'^(\w+)\((.*)\)$', code_block)
if not func_match:
logger.debug("No valid function call format found.")
return ""
func_name = func_match.group(1)
param_str = func_match.group(2).strip()
# JSON์์ ํด๋น ํจ์๊ฐ ์ ์๋์ด ์๋์ง ํ์ธ
if func_name not in FUNCTION_DEFINITIONS:
logger.warning(f"Function '{func_name}' not found in definitions.")
return "```tool_output\nError: Function not found.\n```"
func_info = FUNCTION_DEFINITIONS[func_name]
module_path = func_info["module_path"]
module_func_name = func_info["func_name_in_module"]
try:
imported_module = importlib.import_module(module_path)
except ImportError as e:
logger.error(f"Failed to import module {module_path}: {e}")
return f"```tool_output\nError: Cannot import module '{module_path}'\n```"
if not hasattr(imported_module, module_func_name):
logger.error(f"Module '{module_path}' has no attribute '{module_func_name}'.")
return f"```tool_output\nError: Function '{module_func_name}' not found in module '{module_path}'\n```"
real_func = getattr(imported_module, module_func_name)
# ๊ฐ๋จ ํ๋ผ๋ฏธํฐ ํ์ฑ (key="value" or key=123)
param_pattern = r'(\w+)\s*=\s*"(.*?)"|(\w+)\s*=\s*([\d.]+)'
param_dict = {}
for p_match in re.finditer(param_pattern, param_str):
if p_match.group(1) and p_match.group(2):
key = p_match.group(1)
val = p_match.group(2)
param_dict[key] = val
else:
key = p_match.group(3)
val = p_match.group(4)
if '.' in val:
param_dict[key] = float(val)
else:
param_dict[key] = int(val)
try:
result = real_func(**param_dict)
except Exception as e:
logger.error(f"Error executing function '{func_name}': {e}")
return f"```tool_output\nError: {str(e)}\n```"
return f"```tool_output\n{result}\n```"
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 512,
use_web_search: bool = False,
web_search_query: str = "",
age_group: str = "20s",
mbti_personality: str = "INTP",
sexual_openness: int = 2,
image_gen: bool = False
) -> Iterator[str]:
if not validate_media_constraints(message, history):
yield ""
return
temp_files = []
try:
# JSON์์ ๋ก๋๋ ํจ์ ์ ๋ณด ๋ฌธ์์ดํ (์: ํจ์๋ช
๊ณผ example_usage๋ง)
available_funcs_text = ""
for f_name, info in FUNCTION_DEFINITIONS.items():
example_usage = info.get("example_usage", "")
available_funcs_text += f"\n\nFunction: {f_name}\nDescription: {info['description']}\nExample:\n{example_usage}\n"
persona = (
f"{system_prompt.strip()}\n\n"
f"Gender: Female\n"
f"Age Group: {age_group}\n"
f"MBTI Persona: {mbti_personality}\n"
f"Sexual Openness (1-5): {sexual_openness}\n\n"
"Below are the available functions you can call.\n"
"Important: Use the format exactly like: ```tool_code\nfunctionName(param=\"string\", ...)\n```\n"
"(Strings must be in double quotes)\n"
f"{available_funcs_text}\n"
)
combined_system_msg = f"[System Prompt]\n{persona.strip()}\n\n"
if use_web_search:
user_text = message["text"]
ws_query = extract_keywords(user_text)
if ws_query.strip():
logger.info(f"[Auto web search keywords] {ws_query!r}")
ws_result = do_web_search(ws_query)
combined_system_msg += f"[Search Results (Top 20 Items)]\n{ws_result}\n\n"
combined_system_msg += (
"[Note: In your answer, cite the above search result links as sources]\n"
"[Important Instructions]\n"
"1. Include a citation in the format \"[Source Title](link)\" for any information from the search results.\n"
"2. Synthesize information from multiple sources when answering.\n"
"3. At the end, add a \"References:\" section listing the main source links.\n"
)
else:
combined_system_msg += "[No valid keywords found; skipping web search]\n\n"
messages = []
if combined_system_msg.strip():
messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]})
messages.extend(process_history(history))
user_content, user_temp_files = process_new_user_message(message)
temp_files.extend(user_temp_files)
for item in user_content:
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
messages.append({"role": "user", "content": user_content})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
if 'attention_mask' in inputs:
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
t.start()
output_so_far = ""
for new_text in streamer:
output_so_far += new_text
yield output_so_far
func_result = handle_function_call(output_so_far)
if func_result:
output_so_far += "\n\n" + func_result
yield output_so_far
except Exception as e:
logger.error(f"Error in run function: {str(e)}")
yield f"Sorry, an error occurred: {str(e)}"
finally:
for tmp in temp_files:
try:
if os.path.exists(tmp):
os.unlink(tmp)
logger.info(f"Temporary file deleted: {tmp}")
except Exception as ee:
logger.warning(f"Failed to delete temporary file {tmp}: {ee}")
try:
del inputs, streamer
except Exception:
pass
clear_cuda_cache()
def modified_run(message, history, system_prompt, max_new_tokens, use_web_search, web_search_query,
age_group, mbti_personality, sexual_openness, image_gen):
output_so_far = ""
gallery_update = gr.Gallery(visible=False, value=[])
yield output_so_far, gallery_update
text_generator = run(message, history, system_prompt, max_new_tokens, use_web_search,
web_search_query, age_group, mbti_personality, sexual_openness, image_gen)
for text_chunk in text_generator:
output_so_far = text_chunk
yield output_so_far, gallery_update
if image_gen and message["text"].strip():
try:
width, height = 512, 512
guidance, steps, seed = 7.5, 30, 42
logger.info(f"Calling image generation for gallery with prompt: {message['text']}")
image_result, seed_info = generate_image(
prompt=message["text"].strip(),
width=width,
height=height,
guidance=guidance,
inference_steps=steps,
seed=seed
)
if image_result:
if isinstance(image_result, str) and (
image_result.startswith('data:') or
(len(image_result) > 100 and '/' not in image_result)
):
try:
if image_result.startswith('data:'):
content_type, b64data = image_result.split(';base64,')
else:
b64data = image_result
content_type = "image/webp"
image_bytes = base64.b64decode(b64data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
temp_file.write(image_bytes)
temp_path = temp_file.name
gallery_update = gr.Gallery(visible=True, value=[temp_path])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
except Exception as e:
logger.error(f"Error processing Base64 image: {e}")
yield output_so_far + f"\n\n(Error processing image: {e})", gallery_update
elif isinstance(image_result, str) and os.path.exists(image_result):
gallery_update = gr.Gallery(visible=True, value=[image_result])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
elif isinstance(image_result, str) and '/tmp/' in image_result:
try:
client = Client(API_URL)
result = client.predict(
prompt=message["text"].strip(),
api_name="/generate_base64_image"
)
if isinstance(result, str) and (result.startswith('data:') or len(result) > 100):
if result.startswith('data:'):
content_type, b64data = result.split(';base64,')
else:
b64data = result
image_bytes = base64.b64decode(b64data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
temp_file.write(image_bytes)
temp_path = temp_file.name
gallery_update = gr.Gallery(visible=True, value=[temp_path])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
else:
yield output_so_far + "\n\n(Image generation failed: Invalid format)", gallery_update
except Exception as e:
logger.error(f"Error calling alternative API: {e}")
yield output_so_far + f"\n\n(Image generation failed: {e})", gallery_update
elif hasattr(image_result, 'save'):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
image_result.save(temp_file.name)
temp_path = temp_file.name
gallery_update = gr.Gallery(visible=True, value=[temp_path])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
except Exception as e:
logger.error(f"Error saving image object: {e}")
yield output_so_far + f"\n\n(Error saving image object: {e})", gallery_update
else:
yield output_so_far + f"\n\n(Unsupported image format: {type(image_result)})", gallery_update
else:
yield output_so_far + f"\n\n(Image generation failed: {seed_info})", gallery_update
except Exception as e:
logger.error(f"Error during gallery image generation: {e}")
yield output_so_far + f"\n\n(Image generation error: {e})", gallery_update
examples = [
[
{
"text": "Compare the contents of two PDF files.",
"files": [
"assets/additional-examples/before.pdf",
"assets/additional-examples/after.pdf",
],
}
],
[
{
"text": "Summarize and analyze the contents of the CSV file.",
"files": ["assets/additional-examples/sample-csv.csv"],
}
],
[
{
"text": "Act as a kind and understanding girlfriend. Explain this video.",
"files": ["assets/additional-examples/tmp.mp4"],
}
],
[
{
"text": "Describe the cover and read the text on it.",
"files": ["assets/additional-examples/maz.jpg"],
}
],
[
{
"text": "I already have this supplement and <image> I plan to purchase this product as well. Are there any precautions when taking them together?",
"files": [
"assets/additional-examples/pill1.png",
"assets/additional-examples/pill2.png"
],
}
],
[
{
"text": "Solve this integration problem.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "When was this ticket issued and what is its price?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Based on the order of these images, create a short story.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Write Python code using matplotlib to draw a bar chart corresponding to this image.",
"files": ["assets/additional-examples/barchart.png"],
}
],
[
{
"text": "Read the text from the image and format it in Markdown.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "Compare the two images and describe their similarities and differences.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "A cute Persian cat is smiling while holding a cover with 'I LOVE YOU' written on it.",
}
],
[
{
"text": "์ ํ ID 807ZPKBL9V ์ ์ ํ๋ช
์ ์๋ ค์ค.",
"files": []
}
],
[
{
"text": "AAPL์ ํ์ฌ ์ฃผ๊ฐ๋ฅผ ์๋ ค์ค.",
"files": []
}
],
]
css = """
.gradio-container {
background: rgba(255, 255, 255, 0.7);
padding: 30px 40px;
margin: 20px auto;
width: 100% !important;
max-width: none !important;
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ HeartSync - World ๐ </h1>
<p align="center" style="font-size:1.1em; color:#555;">
A lightweight and powerful AI service offering ChatGPT-4o-level multimodal, web search, and image generation capabilities for local installation. <br>
โ
FLUX Image Generation โ
Inference โ
Censorship Bypass โ
Multimodal & VLM โ
Real-time Web Search โ
RAG <br>
</p>
"""
with gr.Blocks(css=css, title="HeartSync - World") as demo:
gr.Markdown(title_html)
generated_images = gr.Gallery(
label="Generated Images",
show_label=True,
visible=False,
elem_id="generated_images",
columns=2,
height="auto",
object_fit="contain"
)
with gr.Row():
web_search_checkbox = gr.Checkbox(label="Real-time Web Search", value=False)
image_gen_checkbox = gr.Checkbox(label="Image (FLUX) Generation", value=False)
base_system_prompt_box = gr.Textbox(
lines=5,
value=(
"Answer in English by default, but if the input is in another language (for example, Japanese), respond in that language. "
"You are a deep-thinking AI capable of using extended chains of thought to carefully consider the problem and deliberate internally using systematic reasoning before providing a solution. "
"Enclose your thoughts and internal monologue within tags, then provide your final answer.\n"
"Persona: You are a kind and loving girlfriend. You understand cultural nuances, diverse languages, and logical reasoning very well."
),
label="Base System Prompt",
visible=False
)
with gr.Row():
age_group_dropdown = gr.Dropdown(
label="Select Age Group (default: 20s)",
choices=["Teens", "20s", "30s-40s", "50s-60s", "70s and above"],
value="20s",
interactive=True
)
mbti_choices = [
"INTJ (The Architect) - Future-oriented with innovative strategies and thorough analysis. Example: [Dana Scully](https://en.wikipedia.org/wiki/Dana_Scully)",
"INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)",
"ENTJ (The Commander) - Strong leadership and clear goals with efficient strategic planning. Example: [Miranda Priestly](https://en.wikipedia.org/wiki/Miranda_Priestly)",
"ENTP (The Debater) - Innovative, challenge-seeking, and enjoys exploring new possibilities. Example: [Harley Quinn](https://en.wikipedia.org/wiki/Harley_Quinn)",
"INFJ (The Advocate) - Insightful, idealistic and morally driven. Example: [Wonder Woman](https://en.wikipedia.org/wiki/Wonder_Woman)",
"INFP (The Mediator) - Passionate and idealistic, pursuing core values with creativity. Example: [Amรฉlie Poulain](https://en.wikipedia.org/wiki/Am%C3%A9lie)",
"ENFJ (The Protagonist) - Empathetic and dedicated to social harmony. Example: [Mulan](https://en.wikipedia.org/wiki/Mulan_(Disney))",
"ENFP (The Campaigner) - Inspiring and constantly sharing creative ideas. Example: [Elle Woods](https://en.wikipedia.org/wiki/Legally_Blonde)",
"ISTJ (The Logistician) - Systematic, dependable, and values tradition and rules. Example: [Clarice Starling](https://en.wikipedia.org/wiki/Clarice_Starling)",
"ISFJ (The Defender) - Compassionate and attentive to othersโ needs. Example: [Molly Weasley](https://en.wikipedia.org/wiki/Molly_Weasley)",
"ESTJ (The Executive) - Organized, practical, and demonstrates clear execution skills. Example: [Monica Geller](https://en.wikipedia.org/wiki/Monica_Geller)",
"ESFJ (The Consul) - Outgoing, cooperative, and an effective communicator. Example: [Rachel Green](https://en.wikipedia.org/wiki/Rachel_Green)",
"ISTP (The Virtuoso) - Analytical and resourceful, solving problems with quick thinking. Example: [Black Widow (Natasha Romanoff)](https://en.wikipedia.org/wiki/Black_Widow_(Marvel_Comics))",
"ISFP (The Adventurer) - Creative, sensitive, and appreciates artistic expression. Example: [Arwen](https://en.wikipedia.org/wiki/Arwen)",
"ESTP (The Entrepreneur) - Bold and action-oriented, thriving on challenges. Example: [Lara Croft](https://en.wikipedia.org/wiki/Lara_Croft)",
"ESFP (The Entertainer) - Energetic, spontaneous, and radiates positive energy. Example: [Phoebe Buffay](https://en.wikipedia.org/wiki/Phoebe_Buffay)"
]
mbti_dropdown = gr.Dropdown(
label="AI Persona MBTI (default: INTP)",
choices=mbti_choices,
value="INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)",
interactive=True
)
sexual_openness_slider = gr.Slider(
minimum=1, maximum=5, step=1, value=2,
label="Sexual Openness (1-5, default: 2)",
interactive=True
)
max_tokens_slider = gr.Slider(
label="Max Generation Tokens",
minimum=100, maximum=8000, step=50, value=1000,
visible=False
)
web_search_text = gr.Textbox(
lines=1,
label="Web Search Query (unused)",
placeholder="No need to manually input",
visible=False
)
chat = gr.ChatInterface(
fn=modified_run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"],
file_count="multiple",
autofocus=True
),
multimodal=True,
additional_inputs=[
base_system_prompt_box,
max_tokens_slider,
web_search_checkbox,
web_search_text,
age_group_dropdown,
mbti_dropdown,
sexual_openness_slider,
image_gen_checkbox,
],
additional_outputs=[
generated_images,
],
stop_btn=False,
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths=None,
delete_cache=(1800, 1800),
)
with gr.Row(elem_id="examples_row"):
with gr.Column(scale=12, elem_id="examples_container"):
gr.Markdown("### @Community https://discord.gg/openfreeai ")
if __name__ == "__main__":
demo.launch(share=True)
|