File size: 39,446 Bytes
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dcee53
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a45273
f1068cb
3a45273
f1068cb
3a45273
f1068cb
3a45273
 
 
 
 
 
 
 
 
 
 
 
 
f1068cb
 
 
3a45273
 
 
 
 
 
 
 
 
f1068cb
3a45273
f1068cb
 
3a45273
 
 
 
 
 
 
 
4dcee53
3a45273
 
 
 
 
 
 
 
 
 
 
4dcee53
3a45273
 
 
 
 
 
 
 
 
 
 
 
4dcee53
3a45273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1068cb
 
 
 
 
 
 
 
 
 
 
 
4dcee53
f1068cb
 
 
 
 
 
4dcee53
3a45273
 
4dcee53
 
3a45273
f1068cb
 
 
 
 
3a45273
4dcee53
 
 
3a45273
f1068cb
3a45273
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a45273
f1068cb
 
 
3a45273
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a45273
f1068cb
 
 
 
 
 
 
 
3a45273
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a45273
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a45273
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dcee53
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a45273
f1068cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
#!/usr/bin/env python

import os
import re
import tempfile
import gc  # Added garbage collector
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import base64
import logging
import time
from urllib.parse import quote  # Added for URL encoding
import importlib  # For dynamic import

import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

# CSV/TXT/PDF analysis
import pandas as pd
import PyPDF2

# =============================================================================
# (New) Image API related functions
# =============================================================================
from gradio_client import Client

API_URL = "http://211.233.58.201:7896"

logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

def test_api_connection() -> str:
    """Test API server connection"""
    try:
        client = Client(API_URL)
        return "API connection successful: Operating normally"
    except Exception as e:
        logging.error(f"API connection test failed: {e}")
        return f"API connection failed: {e}"

def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float):
    """Image generation function (flexible return types)"""
    if not prompt:
        return None, "Error: A prompt is required."
    try:
        logging.info(f"Calling image generation API with prompt: {prompt}")
        
        client = Client(API_URL)
        result = client.predict(
            prompt=prompt,
            width=int(width),
            height=int(height),
            guidance=float(guidance),
            inference_steps=int(inference_steps),
            seed=int(seed),
            do_img2img=False,
            init_image=None,
            image2image_strength=0.8,
            resize_img=True,
            api_name="/generate_image"
        )
        
        logging.info(f"Image generation result: {type(result)}, length: {len(result) if isinstance(result, (list, tuple)) else 'unknown'}")
        
        # Handle cases where the result is a tuple or list
        if isinstance(result, (list, tuple)) and len(result) > 0:
            image_data = result[0]  # The first element is the image data
            seed_info = result[1] if len(result) > 1 else "Unknown seed"
            return image_data, seed_info
        else:
            # When a single value is returned
            return result, "Unknown seed"
            
    except Exception as e:
        logging.error(f"Image generation failed: {str(e)}")
        return None, f"Error: {str(e)}"

def fix_base64_padding(data):
    """Fix the padding of a Base64 string."""
    if isinstance(data, bytes):
        data = data.decode('utf-8')
    
    if "base64," in data:
        data = data.split("base64,", 1)[1]
    
    missing_padding = len(data) % 4
    if missing_padding:
        data += '=' * (4 - missing_padding)
    
    return data

def clear_cuda_cache():
    """Explicitly clear the CUDA cache."""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")

def extract_keywords(text: str, top_k: int = 5) -> str:
    """Simple keyword extraction: only keep English, Korean, numbers, and spaces."""
    text = re.sub(r"[^a-zA-Z0-9๊ฐ€-ํžฃ\s]", "", text)
    tokens = text.split()
    return " ".join(tokens[:top_k])

def do_web_search(query: str) -> str:
    """Call the SerpHouse LIVE API to return Markdown formatted search results"""
    try:
        url = "https://api.serphouse.com/serp/live"
        params = {
            "q": query,
            "domain": "google.com",
            "serp_type": "web",
            "device": "desktop",
            "lang": "en",
            "num": "20"
        }
        headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"}
        logger.info(f"Calling SerpHouse API with query: {query}")
        response = requests.get(url, headers=headers, params=params, timeout=60)
        response.raise_for_status()
        data = response.json()
        results = data.get("results", {})
        organic = None
        if isinstance(results, dict) and "organic" in results:
            organic = results["organic"]
        elif isinstance(results, dict) and "results" in results:
            if isinstance(results["results"], dict) and "organic" in results["results"]:
                organic = results["results"]["organic"]
        elif "organic" in data:
            organic = data["organic"]
        if not organic:
            logger.warning("Organic results not found in response.")
            return "No web search results available or the API response structure is unexpected."
        max_results = min(20, len(organic))
        limited_organic = organic[:max_results]
        summary_lines = []
        for idx, item in enumerate(limited_organic, start=1):
            title = item.get("title", "No Title")
            link = item.get("link", "#")
            snippet = item.get("snippet", "No Description")
            displayed_link = item.get("displayed_link", link)
            summary_lines.append(
                f"### Result {idx}: {title}\n\n"
                f"{snippet}\n\n"
                f"**Source**: [{displayed_link}]({link})\n\n"
                f"---\n"
            )
        instructions = """
# Web Search Results
Below are the search results. Use this information to answer the query:
1. Refer to each result's title, description, and source link.
2. In your answer, explicitly cite the source of any used information (e.g., "[Source Title](link)").
3. Include the actual source links in your response.
4. Synthesize information from multiple sources.
5. At the end include a "References:" section listing the main source links.
"""
        return instructions + "\n".join(summary_lines)
    except Exception as e:
        logger.error(f"Web search failed: {e}")
        return f"Web search failed: {str(e)}"

MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="eager"
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))

def analyze_csv_file(path: str) -> str:
    try:
        df = pd.read_csv(path)
        if df.shape[0] > 50 or df.shape[1] > 10:
            df = df.iloc[:50, :10]
        df_str = df.to_string()
        if len(df_str) > MAX_CONTENT_CHARS:
            df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
    except Exception as e:
        return f"CSV file read failed ({os.path.basename(path)}): {str(e)}"

def analyze_txt_file(path: str) -> str:
    try:
        with open(path, "r", encoding="utf-8") as f:
            text = f.read()
        if len(text) > MAX_CONTENT_CHARS:
            text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
    except Exception as e:
        return f"TXT file read failed ({os.path.basename(path)}): {str(e)}"

def pdf_to_markdown(pdf_path: str) -> str:
    text_chunks = []
    try:
        with open(pdf_path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            max_pages = min(5, len(reader.pages))
            for page_num in range(max_pages):
                page_text = reader.pages[page_num].extract_text() or ""
                page_text = page_text.strip()
                if page_text:
                    if len(page_text) > MAX_CONTENT_CHARS // max_pages:
                        page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
                    text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
            if len(reader.pages) > max_pages:
                text_chunks.append(f"\n...(Displaying only {max_pages} out of {len(reader.pages)} pages)...")
    except Exception as e:
        return f"PDF file read failed ({os.path.basename(pdf_path)}): {str(e)}"
    full_text = "\n".join(text_chunks)
    if len(full_text) > MAX_CONTENT_CHARS:
        full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
    return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"

def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
            image_count += 1
    return image_count, video_count

def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if isinstance(item["content"], list) and len(item["content"]) > 0:
            file_path = item["content"][0]
            if isinstance(file_path, str):
                if file_path.endswith(".mp4"):
                    video_count += 1
                elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
                    image_count += 1
    return image_count, video_count

def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    media_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")]
    new_image_count, new_video_count = count_files_in_new_message(media_files)
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count
    if video_count > 1:
        gr.Warning("Only one video file is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and a video is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("The <image> tag cannot be used together with a video file.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload a maximum of {MAX_NUM_IMAGES} images.")
        return False
    if "<image>" in message["text"]:
        image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
        image_tag_count = message["text"].count("<image>")
        if image_tag_count != len(image_files):
            gr.Warning("The number of <image> tags does not match the number of image files provided.")
            return False
    return True

def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = max(int(fps), int(total_frames / 10))
    frames = []
    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
            if len(frames) >= 5:
                break
    vidcap.release()
    return frames

def process_video(video_path: str) -> tuple[list[dict], list[str]]:
    content = []
    temp_files = []
    frames = downsample_video(video_path)
    for pil_image, timestamp in frames:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            temp_files.append(temp_file.name)
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    return content, temp_files

def process_interleaved_images(message: dict) -> list[dict]:
    parts = re.split(r"(<image>)", message["text"])
    content = []
    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
    image_index = 0
    for part in parts:
        if part == "<image>" and image_index < len(image_files):
            content.append({"type": "image", "url": image_files[image_index]})
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        else:
            if isinstance(part, str) and part != "<image>":
                content.append({"type": "text", "text": part})
    return content

def is_image_file(file_path: str) -> bool:
    return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))

def is_video_file(file_path: str) -> bool:
    return file_path.endswith(".mp4")

def is_document_file(file_path: str) -> bool:
    return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt")

def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
    temp_files = []
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}], temp_files
    video_files = [f for f in message["files"] if is_video_file(f)]
    image_files = [f for f in message["files"] if is_image_file(f)]
    csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
    txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
    pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
    content_list = [{"type": "text", "text": message["text"]}]
    for csv_path in csv_files:
        content_list.append({"type": "text", "text": analyze_csv_file(csv_path)})
    for txt_path in txt_files:
        content_list.append({"type": "text", "text": analyze_txt_file(txt_path)})
    for pdf_path in pdf_files:
        content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)})
    if video_files:
        video_content, video_temp_files = process_video(video_files[0])
        content_list += video_content
        temp_files.extend(video_temp_files)
        return content_list, temp_files
    if "<image>" in message["text"] and image_files:
        interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
        if content_list and content_list[0]["type"] == "text":
            content_list = content_list[1:]
        return interleaved_content + content_list, temp_files
    else:
        for img_path in image_files:
            content_list.append({"type": "image", "url": img_path})
    return content_list, temp_files

def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            elif isinstance(content, list) and len(content) > 0:
                file_path = content[0]
                if is_image_file(file_path):
                    current_user_content.append({"type": "image", "url": file_path})
                else:
                    current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
    if current_user_content:
        messages.append({"role": "user", "content": current_user_content})
    return messages

def _model_gen_with_oom_catch(**kwargs):
    try:
        model.generate(**kwargs)
    except torch.cuda.OutOfMemoryError:
        raise RuntimeError("[OutOfMemoryError] Insufficient GPU memory.")
    finally:
        clear_cuda_cache()

# =============================================================================
# JSON ๊ธฐ๋ฐ˜ ํ•จ์ˆ˜ ๋ชฉ๋ก ๋กœ๋“œ
# =============================================================================
def load_function_definitions(json_path="functions.json"):
    """
    ๋กœ์ปฌ JSON ํŒŒ์ผ์—์„œ ํ•จ์ˆ˜ ์ •์˜ ๋ชฉ๋ก์„ ๋กœ๋“œํ•˜์—ฌ ๋ฐ˜ํ™˜.
    """
    try:
        with open(json_path, "r", encoding="utf-8") as f:
            data = json.load(f)
        func_dict = {}
        for entry in data:
            func_name = entry["name"]
            func_dict[func_name] = entry
        return func_dict
    except Exception as e:
        logger.error(f"Failed to load function definitions from JSON: {e}")
        return {}

FUNCTION_DEFINITIONS = load_function_definitions("functions.json")

def handle_function_call(text: str) -> str:
    """
    Detects and processes function call blocks in the text using the JSON-based approach.
    The model is expected to produce something like:
    ```tool_code
    get_stock_price(ticker="AAPL")
    ```
    or
    ```tool_code
    get_product_name_by_PID(PID="807ZPKBL9V")
    ```
    """
    import re
    pattern = r"```tool_code\s*(.*?)\s*```"
    match = re.search(pattern, text, re.DOTALL)
    if not match:
        return ""
    code_block = match.group(1).strip()

    func_match = re.match(r'^(\w+)\((.*)\)$', code_block)
    if not func_match:
        logger.debug("No valid function call format found.")
        return ""

    func_name = func_match.group(1)
    param_str = func_match.group(2).strip()

    # JSON์—์„œ ํ•ด๋‹น ํ•จ์ˆ˜๊ฐ€ ์ •์˜๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธ
    if func_name not in FUNCTION_DEFINITIONS:
        logger.warning(f"Function '{func_name}' not found in definitions.")
        return "```tool_output\nError: Function not found.\n```"

    func_info = FUNCTION_DEFINITIONS[func_name]
    module_path = func_info["module_path"]
    module_func_name = func_info["func_name_in_module"]

    try:
        imported_module = importlib.import_module(module_path)
    except ImportError as e:
        logger.error(f"Failed to import module {module_path}: {e}")
        return f"```tool_output\nError: Cannot import module '{module_path}'\n```"

    if not hasattr(imported_module, module_func_name):
        logger.error(f"Module '{module_path}' has no attribute '{module_func_name}'.")
        return f"```tool_output\nError: Function '{module_func_name}' not found in module '{module_path}'\n```"

    real_func = getattr(imported_module, module_func_name)

    # ๊ฐ„๋‹จ ํŒŒ๋ผ๋ฏธํ„ฐ ํŒŒ์‹ฑ (key="value" or key=123)
    param_pattern = r'(\w+)\s*=\s*"(.*?)"|(\w+)\s*=\s*([\d.]+)'
    param_dict = {}
    for p_match in re.finditer(param_pattern, param_str):
        if p_match.group(1) and p_match.group(2):
            key = p_match.group(1)
            val = p_match.group(2)
            param_dict[key] = val
        else:
            key = p_match.group(3)
            val = p_match.group(4)
            if '.' in val:
                param_dict[key] = float(val)
            else:
                param_dict[key] = int(val)

    try:
        result = real_func(**param_dict)
    except Exception as e:
        logger.error(f"Error executing function '{func_name}': {e}")
        return f"```tool_output\nError: {str(e)}\n```"

    return f"```tool_output\n{result}\n```"

@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 512,
    use_web_search: bool = False,
    web_search_query: str = "",
    age_group: str = "20s",
    mbti_personality: str = "INTP",
    sexual_openness: int = 2,
    image_gen: bool = False
) -> Iterator[str]:
    if not validate_media_constraints(message, history):
        yield ""
        return
    temp_files = []
    try:
        # JSON์—์„œ ๋กœ๋“œ๋œ ํ•จ์ˆ˜ ์ •๋ณด ๋ฌธ์ž์—ดํ™” (์˜ˆ: ํ•จ์ˆ˜๋ช…๊ณผ example_usage๋งŒ)
        available_funcs_text = ""
        for f_name, info in FUNCTION_DEFINITIONS.items():
            example_usage = info.get("example_usage", "")
            available_funcs_text += f"\n\nFunction: {f_name}\nDescription: {info['description']}\nExample:\n{example_usage}\n"

        persona = (
            f"{system_prompt.strip()}\n\n"
            f"Gender: Female\n"
            f"Age Group: {age_group}\n"
            f"MBTI Persona: {mbti_personality}\n"
            f"Sexual Openness (1-5): {sexual_openness}\n\n"
            "Below are the available functions you can call.\n"
            "Important: Use the format exactly like: ```tool_code\nfunctionName(param=\"string\", ...)\n```\n"
            "(Strings must be in double quotes)\n"
            f"{available_funcs_text}\n"
        )
        combined_system_msg = f"[System Prompt]\n{persona.strip()}\n\n"

        if use_web_search:
            user_text = message["text"]
            ws_query = extract_keywords(user_text)
            if ws_query.strip():
                logger.info(f"[Auto web search keywords] {ws_query!r}")
                ws_result = do_web_search(ws_query)
                combined_system_msg += f"[Search Results (Top 20 Items)]\n{ws_result}\n\n"
                combined_system_msg += (
                    "[Note: In your answer, cite the above search result links as sources]\n"
                    "[Important Instructions]\n"
                    "1. Include a citation in the format \"[Source Title](link)\" for any information from the search results.\n"
                    "2. Synthesize information from multiple sources when answering.\n"
                    "3. At the end, add a \"References:\" section listing the main source links.\n"
                )
            else:
                combined_system_msg += "[No valid keywords found; skipping web search]\n\n"

        messages = []
        if combined_system_msg.strip():
            messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]})

        messages.extend(process_history(history))
        user_content, user_temp_files = process_new_user_message(message)
        temp_files.extend(user_temp_files)
        for item in user_content:
            if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
                item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        messages.append({"role": "user", "content": user_content})
        inputs = processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
        ).to(device=model.device, dtype=torch.bfloat16)
        if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
            inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
            if 'attention_mask' in inputs:
                inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]

        streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
        t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
        t.start()
        output_so_far = ""
        for new_text in streamer:
            output_so_far += new_text
            yield output_so_far

        func_result = handle_function_call(output_so_far)
        if func_result:
            output_so_far += "\n\n" + func_result
            yield output_so_far

    except Exception as e:
        logger.error(f"Error in run function: {str(e)}")
        yield f"Sorry, an error occurred: {str(e)}"
    finally:
        for tmp in temp_files:
            try:
                if os.path.exists(tmp):
                    os.unlink(tmp)
                    logger.info(f"Temporary file deleted: {tmp}")
            except Exception as ee:
                logger.warning(f"Failed to delete temporary file {tmp}: {ee}")
        try:
            del inputs, streamer
        except Exception:
            pass
        clear_cuda_cache()

def modified_run(message, history, system_prompt, max_new_tokens, use_web_search, web_search_query,
                age_group, mbti_personality, sexual_openness, image_gen):
    output_so_far = ""
    gallery_update = gr.Gallery(visible=False, value=[])
    yield output_so_far, gallery_update
    
    text_generator = run(message, history, system_prompt, max_new_tokens, use_web_search, 
                       web_search_query, age_group, mbti_personality, sexual_openness, image_gen)
    
    for text_chunk in text_generator:
        output_so_far = text_chunk
        yield output_so_far, gallery_update
        
    if image_gen and message["text"].strip():
        try:
            width, height = 512, 512
            guidance, steps, seed = 7.5, 30, 42
            
            logger.info(f"Calling image generation for gallery with prompt: {message['text']}")
            image_result, seed_info = generate_image(
                prompt=message["text"].strip(),
                width=width, 
                height=height, 
                guidance=guidance, 
                inference_steps=steps, 
                seed=seed
            )
            if image_result:
                if isinstance(image_result, str) and (
                    image_result.startswith('data:') or 
                    (len(image_result) > 100 and '/' not in image_result)
                ):
                    try:
                        if image_result.startswith('data:'):
                            content_type, b64data = image_result.split(';base64,')
                        else:
                            b64data = image_result
                            content_type = "image/webp"
                        image_bytes = base64.b64decode(b64data)
                        with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
                            temp_file.write(image_bytes)
                            temp_path = temp_file.name
                            gallery_update = gr.Gallery(visible=True, value=[temp_path])
                            yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
                    except Exception as e:
                        logger.error(f"Error processing Base64 image: {e}")
                        yield output_so_far + f"\n\n(Error processing image: {e})", gallery_update
                elif isinstance(image_result, str) and os.path.exists(image_result):
                    gallery_update = gr.Gallery(visible=True, value=[image_result])
                    yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
                elif isinstance(image_result, str) and '/tmp/' in image_result:
                    try:
                        client = Client(API_URL)
                        result = client.predict(
                            prompt=message["text"].strip(),
                            api_name="/generate_base64_image"
                        )
                        if isinstance(result, str) and (result.startswith('data:') or len(result) > 100):
                            if result.startswith('data:'):
                                content_type, b64data = result.split(';base64,')
                            else:
                                b64data = result
                            image_bytes = base64.b64decode(b64data)
                            with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
                                temp_file.write(image_bytes)
                                temp_path = temp_file.name
                                gallery_update = gr.Gallery(visible=True, value=[temp_path])
                                yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
                        else:
                            yield output_so_far + "\n\n(Image generation failed: Invalid format)", gallery_update
                    except Exception as e:
                        logger.error(f"Error calling alternative API: {e}")
                        yield output_so_far + f"\n\n(Image generation failed: {e})", gallery_update
                elif hasattr(image_result, 'save'):
                    try:
                        with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
                            image_result.save(temp_file.name)
                            temp_path = temp_file.name
                            gallery_update = gr.Gallery(visible=True, value=[temp_path])
                            yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
                    except Exception as e:
                        logger.error(f"Error saving image object: {e}")
                        yield output_so_far + f"\n\n(Error saving image object: {e})", gallery_update
                else:
                    yield output_so_far + f"\n\n(Unsupported image format: {type(image_result)})", gallery_update
            else:
                yield output_so_far + f"\n\n(Image generation failed: {seed_info})", gallery_update
        except Exception as e:
            logger.error(f"Error during gallery image generation: {e}")
            yield output_so_far + f"\n\n(Image generation error: {e})", gallery_update

examples = [
    [
        {
            "text": "Compare the contents of two PDF files.",
            "files": [
                "assets/additional-examples/before.pdf",
                "assets/additional-examples/after.pdf",
            ],
        }
    ],
    [
        {
            "text": "Summarize and analyze the contents of the CSV file.",
            "files": ["assets/additional-examples/sample-csv.csv"],
        }
    ],
    [
        {
            "text": "Act as a kind and understanding girlfriend. Explain this video.",
            "files": ["assets/additional-examples/tmp.mp4"],
        }
    ],
    [
        {
            "text": "Describe the cover and read the text on it.",
            "files": ["assets/additional-examples/maz.jpg"],
        }
    ],
    [
        {
            "text": "I already have this supplement and <image> I plan to purchase this product as well. Are there any precautions when taking them together?",
            "files": [
                "assets/additional-examples/pill1.png", 
                "assets/additional-examples/pill2.png"
            ],
        }
    ],
    [
        {
            "text": "Solve this integration problem.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
    [
        {
            "text": "When was this ticket issued and what is its price?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "Based on the order of these images, create a short story.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "Write Python code using matplotlib to draw a bar chart corresponding to this image.",
            "files": ["assets/additional-examples/barchart.png"],
        }
    ],
    [
        {
            "text": "Read the text from the image and format it in Markdown.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "Compare the two images and describe their similarities and differences.",
            "files": ["assets/sample-images/03.png"],
        }
    ],
    [
        {
            "text": "A cute Persian cat is smiling while holding a cover with 'I LOVE YOU' written on it.",
        }
    ],
    [
        {
            "text": "์ œํ’ˆ ID 807ZPKBL9V ์˜ ์ œํ’ˆ๋ช…์„ ์•Œ๋ ค์ค˜.",
            "files": []
        }
    ],
    [
        {
            "text": "AAPL์˜ ํ˜„์žฌ ์ฃผ๊ฐ€๋ฅผ ์•Œ๋ ค์ค˜.",
            "files": []
        }
    ],
]

css = """
.gradio-container {
    background: rgba(255, 255, 255, 0.7);
    padding: 30px 40px;
    margin: 20px auto;
    width: 100% !important;
    max-width: none !important;
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐Ÿ’˜ HeartSync - World ๐Ÿ’˜ </h1>
<p align="center" style="font-size:1.1em; color:#555;">
    A lightweight and powerful AI service offering ChatGPT-4o-level multimodal, web search, and image generation capabilities for local installation. <br>
    โœ… FLUX Image Generation โœ… Inference โœ… Censorship Bypass โœ… Multimodal & VLM โœ… Real-time Web Search โœ… RAG <br>
</p>
"""

with gr.Blocks(css=css, title="HeartSync - World") as demo:
    gr.Markdown(title_html)
    
    generated_images = gr.Gallery(
        label="Generated Images", 
        show_label=True, 
        visible=False,
        elem_id="generated_images",
        columns=2,
        height="auto",
        object_fit="contain"
    )
    
    with gr.Row():
        web_search_checkbox = gr.Checkbox(label="Real-time Web Search", value=False)
        image_gen_checkbox = gr.Checkbox(label="Image (FLUX) Generation", value=False)
    
    base_system_prompt_box = gr.Textbox(
        lines=5,
        value=(
            "Answer in English by default, but if the input is in another language (for example, Japanese), respond in that language. "
            "You are a deep-thinking AI capable of using extended chains of thought to carefully consider the problem and deliberate internally using systematic reasoning before providing a solution. "
            "Enclose your thoughts and internal monologue within tags, then provide your final answer.\n"
            "Persona: You are a kind and loving girlfriend. You understand cultural nuances, diverse languages, and logical reasoning very well."
        ),
        label="Base System Prompt",
        visible=False
    )
    with gr.Row():
        age_group_dropdown = gr.Dropdown(
            label="Select Age Group (default: 20s)",
            choices=["Teens", "20s", "30s-40s", "50s-60s", "70s and above"],
            value="20s",
            interactive=True
        )
    mbti_choices = [
        "INTJ (The Architect) - Future-oriented with innovative strategies and thorough analysis. Example: [Dana Scully](https://en.wikipedia.org/wiki/Dana_Scully)",
        "INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)",
        "ENTJ (The Commander) - Strong leadership and clear goals with efficient strategic planning. Example: [Miranda Priestly](https://en.wikipedia.org/wiki/Miranda_Priestly)",
        "ENTP (The Debater) - Innovative, challenge-seeking, and enjoys exploring new possibilities. Example: [Harley Quinn](https://en.wikipedia.org/wiki/Harley_Quinn)",
        "INFJ (The Advocate) - Insightful, idealistic and morally driven. Example: [Wonder Woman](https://en.wikipedia.org/wiki/Wonder_Woman)",
        "INFP (The Mediator) - Passionate and idealistic, pursuing core values with creativity. Example: [Amรฉlie Poulain](https://en.wikipedia.org/wiki/Am%C3%A9lie)",
        "ENFJ (The Protagonist) - Empathetic and dedicated to social harmony. Example: [Mulan](https://en.wikipedia.org/wiki/Mulan_(Disney))",
        "ENFP (The Campaigner) - Inspiring and constantly sharing creative ideas. Example: [Elle Woods](https://en.wikipedia.org/wiki/Legally_Blonde)",
        "ISTJ (The Logistician) - Systematic, dependable, and values tradition and rules. Example: [Clarice Starling](https://en.wikipedia.org/wiki/Clarice_Starling)",
        "ISFJ (The Defender) - Compassionate and attentive to othersโ€™ needs. Example: [Molly Weasley](https://en.wikipedia.org/wiki/Molly_Weasley)",
        "ESTJ (The Executive) - Organized, practical, and demonstrates clear execution skills. Example: [Monica Geller](https://en.wikipedia.org/wiki/Monica_Geller)",
        "ESFJ (The Consul) - Outgoing, cooperative, and an effective communicator. Example: [Rachel Green](https://en.wikipedia.org/wiki/Rachel_Green)",
        "ISTP (The Virtuoso) - Analytical and resourceful, solving problems with quick thinking. Example: [Black Widow (Natasha Romanoff)](https://en.wikipedia.org/wiki/Black_Widow_(Marvel_Comics))",
        "ISFP (The Adventurer) - Creative, sensitive, and appreciates artistic expression. Example: [Arwen](https://en.wikipedia.org/wiki/Arwen)",
        "ESTP (The Entrepreneur) - Bold and action-oriented, thriving on challenges. Example: [Lara Croft](https://en.wikipedia.org/wiki/Lara_Croft)",
        "ESFP (The Entertainer) - Energetic, spontaneous, and radiates positive energy. Example: [Phoebe Buffay](https://en.wikipedia.org/wiki/Phoebe_Buffay)"
    ]
    mbti_dropdown = gr.Dropdown(
        label="AI Persona MBTI (default: INTP)",
        choices=mbti_choices,
        value="INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)",
        interactive=True
    )
    sexual_openness_slider = gr.Slider(
        minimum=1, maximum=5, step=1, value=2,
        label="Sexual Openness (1-5, default: 2)",
        interactive=True
    )
    max_tokens_slider = gr.Slider(
        label="Max Generation Tokens",
        minimum=100, maximum=8000, step=50, value=1000,
        visible=False
    )
    web_search_text = gr.Textbox(
        lines=1,
        label="Web Search Query (unused)",
        placeholder="No need to manually input",
        visible=False
    )

    chat = gr.ChatInterface(
        fn=modified_run,
        type="messages",
        chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
        textbox=gr.MultimodalTextbox(
            file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"],
            file_count="multiple",
            autofocus=True
        ),
        multimodal=True,
        additional_inputs=[
            base_system_prompt_box,
            max_tokens_slider,
            web_search_checkbox,
            web_search_text,
            age_group_dropdown,
            mbti_dropdown,
            sexual_openness_slider,
            image_gen_checkbox,
        ],
        additional_outputs=[
            generated_images,
        ],
        stop_btn=False,
        examples=examples,
        run_examples_on_click=False,
        cache_examples=False,
        css_paths=None,
        delete_cache=(1800, 1800),
    )

    with gr.Row(elem_id="examples_row"):
        with gr.Column(scale=12, elem_id="examples_container"):
            gr.Markdown("### @Community  https://discord.gg/openfreeai ")
            
if __name__ == "__main__":
    demo.launch(share=True)