Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,425 Bytes
b074e28 aa7324d b074e28 aa7324d b074e28 028b069 b074e28 aa7324d aa3d2c4 aa7324d aa3d2c4 aa7324d aa3d2c4 aa7324d aa3d2c4 aa7324d b074e28 aa7324d b074e28 028b069 b074e28 aa3d2c4 b074e28 aa3d2c4 aa7324d b074e28 aa7324d aa3d2c4 aa7324d b074e28 9267c22 b074e28 869c661 9267c22 869c661 b074e28 aa3d2c4 b074e28 aa3d2c4 b074e28 aa3d2c4 b074e28 9267c22 b074e28 aa3d2c4 b074e28 0b617df b074e28 0b617df b074e28 3b8619b b074e28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
"""
DNA-Diffusion Gradio Application
Interactive DNA sequence generation with slot machine visualization and protein analysis
"""
import gradio as gr
import logging
import json
import os
from typing import Dict, Any, Tuple
import html
import requests
import time
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Try to import spaces for GPU decoration
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
# Create a dummy decorator if spaces is not available
class spaces:
@staticmethod
def GPU(duration=60):
def decorator(func):
return func
return decorator
# Try to import model, but allow app to run without it for UI development
try:
from dna_diffusion_model import DNADiffusionModel, get_model
MODEL_AVAILABLE = True
logger.info("DNA-Diffusion model module loaded successfully")
except ImportError as e:
logger.warning(f"DNA-Diffusion model not available: {e}")
MODEL_AVAILABLE = False
# Load the HTML interface
HTML_FILE = "dna-slot-machine.html"
if not os.path.exists(HTML_FILE):
raise FileNotFoundError(f"HTML interface file '{HTML_FILE}' not found. Please ensure it exists in the same directory as app.py")
with open(HTML_FILE, "r") as f:
SLOT_MACHINE_HTML = f.read()
class ProteinAnalyzer:
"""Handles protein translation and analysis using LLM"""
# Genetic code table for DNA to amino acid translation
CODON_TABLE = {
'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L',
'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S',
'TAT': 'Y', 'TAC': 'Y', 'TAA': '*', 'TAG': '*',
'TGT': 'C', 'TGC': 'C', 'TGA': '*', 'TGG': 'W',
'CTT': 'L', 'CTC': 'L', 'CTA': 'L', 'CTG': 'L',
'CCT': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P',
'CAT': 'H', 'CAC': 'H', 'CAA': 'Q', 'CAG': 'Q',
'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R',
'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M',
'ACT': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T',
'AAT': 'N', 'AAC': 'N', 'AAA': 'K', 'AAG': 'K',
'AGT': 'S', 'AGC': 'S', 'AGA': 'R', 'AGG': 'R',
'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V',
'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A',
'GAT': 'D', 'GAC': 'D', 'GAA': 'E', 'GAG': 'E',
'GGT': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G'
}
@staticmethod
def dna_to_protein(dna_sequence: str) -> str:
"""Translate DNA sequence to protein sequence"""
# Ensure sequence is uppercase
dna_sequence = dna_sequence.upper()
# Remove any non-DNA characters
dna_sequence = ''.join(c for c in dna_sequence if c in 'ATCG')
# Translate to protein
protein = []
for i in range(0, len(dna_sequence) - 2, 3):
codon = dna_sequence[i:i+3]
if len(codon) == 3:
amino_acid = ProteinAnalyzer.CODON_TABLE.get(codon, 'X')
if amino_acid == '*': # Stop codon
break
protein.append(amino_acid)
return ''.join(protein)
@staticmethod
def analyze_protein_with_llm(protein_sequence: str, cell_type: str, language: str = "en") -> str:
"""Analyze protein structure and function using Friendli LLM API"""
# Get API token from environment
token = os.getenv("FRIENDLI_TOKEN")
if not token:
logger.warning("FRIENDLI_TOKEN not found in environment variables")
if language == "ko":
return "๋จ๋ฐฑ์ง ๋ถ์ ๋ถ๊ฐ: API ํ ํฐ์ด ์ค์ ๋์ง ์์์ต๋๋ค"
return "Protein analysis unavailable: API token not configured"
try:
url = "https://api.friendli.ai/dedicated/v1/chat/completions"
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json"
}
# Create prompt for protein analysis based on language
if language == "ko":
prompt = f"""๋น์ ์ ์๋ฌผ์ ๋ณดํ ์ ๋ฌธ๊ฐ์
๋๋ค. ๋ค์ ๋จ๋ฐฑ์ง ์์ด์ ๋ถ์ํ๊ณ ์ ์ฌ์ ์ธ ๊ตฌ์กฐ์ ๊ธฐ๋ฅ์ ๋ํ ํต์ฐฐ๋ ฅ์ ์ ๊ณตํด์ฃผ์ธ์.
๋จ๋ฐฑ์ง ์์ด: {protein_sequence}
์ธํฌ ์ ํ: {cell_type}
๋ค์ ๋ด์ฉ์ ํฌํจํด์ฃผ์ธ์:
1. ์์ด ํจํด์ ๊ธฐ๋ฐ์ผ๋ก ์์ธก๋๋ ๋จ๋ฐฑ์ง ํจ๋ฐ๋ฆฌ ๋๋ ๋๋ฉ์ธ
2. ์ ์ฌ์ ์ธ ๊ตฌ์กฐ์ ํน์ง (์ํ ๋์ , ๋ฒ ํ ์ํธ, ๋ฃจํ)
3. ๊ฐ๋ฅํ ์๋ฌผํ์ ๊ธฐ๋ฅ
4. {cell_type} ์ธํฌ ์ ํ๊ณผ์ ๊ด๋ จ์ฑ
5. ์ฃผ๋ชฉํ ๋งํ ์์ด ๋ชจํฐํ๋ ํน์ฑ
๊ณผํ ์ ํ๋ฆฌ์ผ์ด์
์ ํ์ํ๊ธฐ์ ์ ํฉํ๋๋ก ๊ฐ๊ฒฐํ๋ฉด์๋ ์ ์ตํ ์๋ต์ ์์ฑํด์ฃผ์ธ์."""
else:
prompt = f"""You are a bioinformatics expert. Analyze the following protein sequence and provide insights about its potential structure and function.
Protein sequence: {protein_sequence}
Cell type context: {cell_type}
Please provide:
1. Predicted protein family or domain based on sequence patterns
2. Potential structural features (alpha helices, beta sheets, loops)
3. Possible biological functions
4. Relevance to the {cell_type} cell type
5. Any notable sequence motifs or characteristics
Keep the response concise but informative, suitable for display in a scientific application."""
payload = {
"model": "dep89a2fld32mcm",
"messages": [
{
"role": "system",
"content": "You are a knowledgeable bioinformatics assistant specializing in protein structure and function prediction." if language == "en" else "๋น์ ์ ๋จ๋ฐฑ์ง ๊ตฌ์กฐ์ ๊ธฐ๋ฅ ์์ธก์ ์ ๋ฌธ์ผ๋ก ํ๋ ์ง์์ด ํ๋ถํ ์๋ฌผ์ ๋ณดํ ์ด์์คํดํธ์
๋๋ค."
},
{
"role": "user",
"content": prompt
}
],
"max_tokens": 1000,
"temperature": 0.7,
"top_p": 0.8,
"stream": False # Disable streaming for simplicity
}
response = requests.post(url, json=payload, headers=headers, timeout=30)
response.raise_for_status()
result = response.json()
analysis = result['choices'][0]['message']['content']
return analysis
except requests.exceptions.RequestException as e:
logger.error(f"Failed to analyze protein with LLM: {e}")
return f"Protein analysis failed: {str(e)}"
except Exception as e:
logger.error(f"Unexpected error during protein analysis: {e}")
return "Protein analysis unavailable due to an error"
class DNADiffusionApp:
"""Main application class for DNA-Diffusion Gradio interface"""
def __init__(self):
self.model = None
self.model_loading = False
self.model_error = None
self.protein_analyzer = ProteinAnalyzer()
def initialize_model(self):
"""Initialize the DNA-Diffusion model"""
if not MODEL_AVAILABLE:
self.model_error = "DNA-Diffusion model module not available. Please install dependencies."
return
if self.model_loading:
return
self.model_loading = True
try:
logger.info("Starting model initialization...")
self.model = get_model()
logger.info("Model initialized successfully!")
self.model_error = None
except Exception as e:
logger.error(f"Failed to initialize model: {e}")
self.model_error = str(e)
self.model = None
finally:
self.model_loading = False
@spaces.GPU(duration=60)
def generate_sequence(self, cell_type: str, guidance_scale: float = 1.0) -> Tuple[str, Dict[str, Any]]:
"""Generate a DNA sequence using the model or mock data"""
# Use mock generation if model is not available
if not MODEL_AVAILABLE or self.model is None:
logger.warning("Using mock sequence generation")
import random
sequence = ''.join(random.choice(['A', 'T', 'C', 'G']) for _ in range(200))
metadata = {
'cell_type': cell_type,
'guidance_scale': guidance_scale,
'generation_time': 2.0,
'mock': True
}
# Simulate generation time
time.sleep(2.0)
return sequence, metadata
# Use real model
try:
result = self.model.generate(cell_type, guidance_scale)
return result['sequence'], result['metadata']
except Exception as e:
logger.error(f"Generation failed: {e}")
raise
def handle_generation_request(self, cell_type: str, guidance_scale: float, language: str = "en"):
"""Handle sequence generation request from Gradio"""
try:
logger.info(f"Generating sequence for cell type: {cell_type}, language: {language}")
# Generate DNA sequence
sequence, metadata = self.generate_sequence(cell_type, guidance_scale)
# Translate to protein
logger.info("Translating DNA to protein sequence...")
protein_sequence = self.protein_analyzer.dna_to_protein(sequence)
# Add protein sequence to metadata
metadata['protein_sequence'] = protein_sequence
metadata['protein_length'] = len(protein_sequence)
# Analyze protein with LLM
logger.info("Analyzing protein structure and function...")
protein_analysis = self.protein_analyzer.analyze_protein_with_llm(
protein_sequence, cell_type, language
)
# Add analysis to metadata
metadata['protein_analysis'] = protein_analysis
logger.info("Generation and analysis complete")
return sequence, json.dumps(metadata)
except Exception as e:
error_msg = str(e)
logger.error(f"Generation request failed: {error_msg}")
return "", json.dumps({"error": error_msg})
# Create single app instance
app = DNADiffusionApp()
def create_demo():
"""Create the Gradio demo interface"""
# CSS to hide backend controls and prevent scrolling
css = """
#hidden-controls { display: none !important; }
.gradio-container {
overflow: hidden;
background-color: #000000 !important;
}
#dna-frame { overflow: hidden; position: relative; }
body {
background-color: #000000 !important;
}
"""
# JavaScript for handling communication between iframe and Gradio
js = """
function() {
console.log('Initializing DNA-Diffusion Gradio interface...');
// Set up message listener to receive requests from iframe
window.addEventListener('message', function(event) {
console.log('Parent received message:', event.data);
if (event.data.type === 'generate_request') {
console.log('Triggering generation for cell type:', event.data.cellType);
console.log('Language:', event.data.language);
// Update the hidden cell type input
const radioInputs = document.querySelectorAll('#cell-type-input input[type="radio"]');
radioInputs.forEach(input => {
if (input.value === event.data.cellType) {
input.checked = true;
// Trigger change event
input.dispatchEvent(new Event('change'));
}
});
// Update the language input
const langInputs = document.querySelectorAll('#language-input input[type="radio"]');
langInputs.forEach(input => {
if (input.value === event.data.language) {
input.checked = true;
input.dispatchEvent(new Event('change'));
}
});
// Small delay to ensure radio button update is processed
setTimeout(() => {
document.querySelector('#generate-btn').click();
}, 100);
}
});
// Function to send sequence to iframe
window.sendSequenceToIframe = function(sequence, metadata) {
console.log('Sending sequence to iframe:', sequence);
const iframe = document.querySelector('#dna-frame iframe');
if (iframe && iframe.contentWindow) {
try {
const meta = JSON.parse(metadata);
if (meta.error) {
iframe.contentWindow.postMessage({
type: 'generation_error',
error: meta.error
}, '*');
} else {
iframe.contentWindow.postMessage({
type: 'sequence_generated',
sequence: sequence,
metadata: meta
}, '*');
}
} catch (e) {
console.error('Failed to parse metadata:', e);
// If parsing fails, still send the sequence
iframe.contentWindow.postMessage({
type: 'sequence_generated',
sequence: sequence,
metadata: {}
}, '*');
}
} else {
console.error('Could not find iframe');
}
};
}
"""
with gr.Blocks(css=css, js=js, theme=gr.themes.Base()) as demo:
# Hidden controls for backend processing
with gr.Column(elem_id="hidden-controls", visible=False):
cell_type_input = gr.Radio(
["K562", "GM12878", "HepG2"],
value="K562",
label="Cell Type",
elem_id="cell-type-input"
)
language_input = gr.Radio(
["en", "ko"],
value="en",
label="Language",
elem_id="language-input"
)
guidance_input = gr.Slider(
minimum=1.0,
maximum=10.0,
value=1.0,
step=0.5,
label="Guidance Scale",
elem_id="guidance-input"
)
generate_btn = gr.Button("Generate", elem_id="generate-btn")
sequence_output = gr.Textbox(label="Sequence", elem_id="sequence-output")
metadata_output = gr.Textbox(label="Metadata", elem_id="metadata-output")
# Main interface - the slot machine in an iframe
# Escape the HTML content for srcdoc
escaped_html = html.escape(SLOT_MACHINE_HTML, quote=True)
iframe_html = f'<iframe srcdoc="{escaped_html}" style="width: 100%; height: 800px; border: none; display: block;"></iframe>'
html_display = gr.HTML(
iframe_html,
elem_id="dna-frame"
)
# Wire up the generation
generate_btn.click(
fn=app.handle_generation_request,
inputs=[cell_type_input, guidance_input, language_input],
outputs=[sequence_output, metadata_output]
).then(
fn=None,
inputs=[sequence_output, metadata_output],
outputs=None,
js="(seq, meta) => sendSequenceToIframe(seq, meta)"
)
# Initialize model on load
demo.load(
fn=app.initialize_model,
inputs=None,
outputs=None
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_demo()
# Parse any command line arguments
import argparse
parser = argparse.ArgumentParser(description="DNA-Diffusion Gradio App")
parser.add_argument("--share", action="store_true", help="Create a public shareable link")
parser.add_argument("--port", type=int, default=7860, help="Port to run the app on")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the app on")
args = parser.parse_args()
# For Hugging Face Spaces deployment
import os
if os.getenv("SPACE_ID"):
# Running on Hugging Face Spaces
args.host = "0.0.0.0"
args.port = 7860
args.share = False
inbrowser = False
else:
inbrowser = True
logger.info(f"Starting DNA-Diffusion Gradio app on {args.host}:{args.port}")
demo.launch(
share=args.share,
server_name=args.host,
server_port=args.port,
inbrowser=inbrowser
) |