Portrait-Animation / sonic.py
openfree's picture
Update sonic.py
36737d5 verified
raw
history blame
9.68 kB
import os
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def test(
pipe,
config,
wav_enc,
audio_pe,
audio2bucket,
image_encoder,
width,
height,
batch
):
"""Run one forward pass to generate the video tensor."""
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
image_embeds = image_encoder(clip_img).image_embeds
audio_feature = batch['audio_feature']
audio_len = batch['audio_len']
step = int(config.step)
window = 3000
audio_prompts = []
last_audio_prompts = []
for i in range(0, audio_feature.shape[-1], window):
audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i + window], output_hidden_states=True).hidden_states
last_audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i + window]).last_hidden_state
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
audio_prompt = torch.stack(audio_prompt, dim=2)
audio_prompts.append(audio_prompt)
last_audio_prompts.append(last_audio_prompt)
audio_prompts = torch.cat(audio_prompts, dim=1)
audio_prompts = audio_prompts[:, :audio_len * 2]
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
torch.zeros_like(audio_prompts[:, :6])], 1)
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
last_audio_prompts = last_audio_prompts[:, :audio_len * 2]
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[:, :24]), last_audio_prompts,
torch.zeros_like(last_audio_prompts[:, :26])], 1)
ref_tensor_list = []
audio_tensor_list = []
uncond_audio_tensor_list = []
motion_buckets = []
for i in tqdm(range(audio_len // step)):
audio_clip = audio_prompts[:, i * 2 * step:i * 2 * step + 10].unsqueeze(0)
audio_clip_for_bucket = last_audio_prompts[:, i * 2 * step:i * 2 * step + 50].unsqueeze(0)
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
motion_bucket = motion_bucket * 16 + 16
motion_buckets.append(motion_bucket[0])
cond_audio_clip = audio_pe(audio_clip).squeeze(0)
uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)
ref_tensor_list.append(ref_img[0])
audio_tensor_list.append(cond_audio_clip[0])
uncond_audio_tensor_list.append(uncond_audio_clip[0])
video = pipe(
ref_img,
clip_img,
face_mask,
audio_tensor_list,
uncond_audio_tensor_list,
motion_buckets,
height=height,
width=width,
num_frames=len(audio_tensor_list),
decode_chunk_size=config.decode_chunk_size,
motion_bucket_scale=config.motion_bucket_scale,
fps=config.fps,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale1=config.min_appearance_guidance_scale,
max_guidance_scale1=config.max_appearance_guidance_scale,
min_guidance_scale2=config.audio_guidance_scale,
max_guidance_scale2=config.audio_guidance_scale,
overlap=config.overlap,
shift_offset=config.shift_offset,
frames_per_batch=config.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength
).frames
video = (video * 0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
return video
class Sonic:
"""Wrapper class for the Sonic portrait animation pipeline."""
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
# --------- load config & device ---------
config = self.config
config.use_interframe = enable_interpolate_frame
device = f'cuda:{device_id}' if device_id > -1 else 'cpu'
self.device = device
# --------- Model paths ---------
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
# --------- Load sub‑modules ---------
vae = AutoencoderKLTemporalDecoder.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="vae",
variant="fp16"
)
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="scheduler"
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="image_encoder",
variant="fp16"
)
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="unet",
variant="fp16"
)
add_ip_adapters(unet, [32], [config.ip_audio_scale])
audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=1024,
context_tokens=32).to(device)
audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024, intermediate_dim=1024,
output_dim=1, context_tokens=2).to(device)
# --------- Load checkpoints ---------
unet_ckpt = torch.load(os.path.join(BASE_DIR, config.unet_checkpoint_path), map_location="cpu")
audio2token_ckpt = torch.load(os.path.join(BASE_DIR, config.audio2token_checkpoint_path), map_location="cpu")
audio2bucket_ckpt = torch.load(os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path), map_location="cpu")
unet.load_state_dict(unet_ckpt, strict=True)
audio2token.load_state_dict(audio2token_ckpt, strict=True)
audio2bucket.load_state_dict(audio2bucket_ckpt, strict=True)
# --------- dtype ---------
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(f"Unsupported weight dtype: {config.weight_dtype}")
# --------- Whisper encoder for audio ---------
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
# --------- Face detector & frame interpolator ---------
det_path = os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt')
self.face_det = AlignImage(device, det_path=det_path)
if config.use_interframe:
self.rife = RIFEModel(device=device)
self.rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
# --------- Move modules to device & dtype ---------
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
# --------- Compose pipeline ---------
pipe = SonicPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
)
self.pipe = pipe.to(device=device, dtype=weight_dtype)
self.whisper = whisper
self.audio2token = audio2token
self.audio2bucket = audio2bucket
self.image_encoder = image_encoder
print('Sonic initialization complete.')
# -------------------------- Public helpers --------------------------
def preprocess(self, image_path: str, expand_ratio: float = 1.0):
"""Detect face and compute crop bbox (optional)."""
face_image = cv2.imread(image_path)
h, w = face_image.shape[:2]
_, _, bboxes = self.face_det(face_image, maxface=True)
face_num = len(bboxes)
bbox_s = []
if face_num > 0:
x1, y1, ww, hh = bboxes[0]
x2, y2 = x1 + ww, y1 + hh
bbox = x1, y1, x2, y2
bbox_s = process_bbox(bbox, expand_radio=expand_ratio, height=h, width=w)
return {
'face_num': face_num,
'crop_bbox': bbox_s,
}
def crop_image(self, input_image_path: str, output_image_path: str, crop_bbox):
face_image = cv2.imread(input_image_path)
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
cv2.imwrite(output