File size: 40,580 Bytes
d48cdf4
 
 
 
 
b9f6a1d
d48cdf4
 
0ea9032
 
d48cdf4
 
 
 
 
 
 
507fad1
b9f6a1d
8fa1eef
b9f6a1d
c6c9a50
 
9dddfec
b9f6a1d
9dddfec
 
b9f6a1d
9dddfec
 
 
 
5510c43
0ea9032
5510c43
ac92569
5510c43
1e394d0
b9f6a1d
1e394d0
 
a12c96b
b9f6a1d
a12c96b
 
1e394d0
 
 
 
5510c43
b9f6a1d
5510c43
 
 
b9f6a1d
5510c43
 
 
d07df81
444ad96
5510c43
 
 
b9f6a1d
5510c43
444ad96
b9f6a1d
5510c43
d07df81
 
 
 
 
b9f6a1d
 
d07df81
b9f6a1d
9aac221
d07df81
 
b9f6a1d
d07df81
 
b9f6a1d
5510c43
d07df81
 
b9f6a1d
d07df81
 
 
b9f6a1d
d07df81
 
 
 
b9f6a1d
d07df81
 
 
5510c43
b9f6a1d
 
d07df81
b9f6a1d
d07df81
5510c43
b9f6a1d
444ad96
 
 
b9f6a1d
5510c43
444ad96
 
 
 
f7748ac
444ad96
b9f6a1d
444ad96
f7748ac
 
b9f6a1d
f7748ac
444ad96
d07df81
b9f6a1d
f7748ac
54917ae
b9f6a1d
f7748ac
 
 
b9f6a1d
f7748ac
d07df81
5510c43
 
 
 
 
ac92569
b9f6a1d
ac92569
42893c3
b9f6a1d
a85231d
6977531
d48cdf4
 
2b2c22c
 
 
b9f6a1d
d48cdf4
 
 
507fad1
ac92569
b9f6a1d
ac92569
8fa1eef
ac92569
b9f6a1d
ac92569
8fa1eef
 
5ff87dd
 
507fad1
8fa1eef
 
2b2c22c
8fa1eef
 
 
 
 
ac92569
b9f6a1d
ac92569
8fa1eef
 
507fad1
8fa1eef
 
2b2c22c
8fa1eef
 
 
 
c6c9a50
ac92569
b9f6a1d
ac92569
507fad1
c6c9a50
 
 
5ff87dd
 
 
507fad1
 
 
5ff87dd
 
 
 
 
c6c9a50
 
 
507fad1
 
 
 
 
 
c6c9a50
ac92569
b9f6a1d
ac92569
d48cdf4
 
 
 
 
 
5ff87dd
d48cdf4
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
 
d48cdf4
 
 
 
8fa1eef
 
2b2c22c
8fa1eef
 
 
d48cdf4
 
 
77b4bdf
d48cdf4
 
 
 
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
 
77b4bdf
d48cdf4
 
 
ac92569
b9f6a1d
ac92569
d48cdf4
 
 
 
ac92569
77f7fca
507fad1
d48cdf4
 
 
 
 
b9f6a1d
9dddfec
d48cdf4
 
 
5ff87dd
 
507fad1
d48cdf4
 
 
 
9dddfec
d48cdf4
b9f6a1d
9dddfec
d48cdf4
507fad1
 
d48cdf4
 
b9f6a1d
d48cdf4
 
9dddfec
 
d48cdf4
 
ac92569
b9f6a1d
ac92569
d48cdf4
 
 
 
5ff87dd
 
 
d48cdf4
5ff87dd
 
d48cdf4
 
 
c6c9a50
 
 
d48cdf4
 
 
ac92569
b9f6a1d
ac92569
5ff87dd
 
 
 
 
 
 
ac92569
 
 
 
 
 
5ff87dd
9dddfec
b9f6a1d
9dddfec
d48cdf4
9dddfec
d48cdf4
5ff87dd
 
8fa1eef
 
c6c9a50
77b4bdf
507fad1
77b4bdf
8fa1eef
 
 
77b4bdf
8fa1eef
 
 
d48cdf4
c6c9a50
507fad1
 
c6c9a50
77b4bdf
9dddfec
 
 
 
77b4bdf
5ff87dd
 
ac92569
1e394d0
9dddfec
c6c9a50
8fa1eef
 
77b4bdf
9dddfec
d48cdf4
5ff87dd
ac92569
b9f6a1d
ac92569
d48cdf4
 
507fad1
d48cdf4
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
1e394d0
5ff87dd
 
 
d48cdf4
 
 
9dddfec
b9f6a1d
9dddfec
 
 
b9f6a1d
9dddfec
 
 
 
 
b9f6a1d
 
9dddfec
 
b9f6a1d
9dddfec
 
 
ac92569
b9f6a1d
ac92569
d48cdf4
5510c43
 
 
 
 
 
 
 
1e394d0
d48cdf4
 
 
 
b9f6a1d
9dddfec
5ff87dd
0ea9032
 
b9f6a1d
0ea9032
 
 
1e394d0
 
 
0ea9032
 
 
54917ae
1e394d0
0ea9032
5510c43
5ff87dd
0ea9032
 
 
 
 
 
5ff87dd
0ea9032
9dddfec
b9f6a1d
9dddfec
5ff87dd
 
 
 
 
 
 
 
 
 
 
 
9dddfec
b9f6a1d
9dddfec
 
 
 
 
5ff87dd
 
0d4c8dd
5ff87dd
 
 
0ea9032
6977531
5ff87dd
 
 
 
 
 
ac92569
5ff87dd
 
b9f6a1d
9dddfec
 
b9f6a1d
9dddfec
 
 
 
 
 
 
 
b9f6a1d
9dddfec
 
 
 
 
 
6977531
 
ac92569
b9f6a1d
ac92569
5510c43
a028900
 
 
 
 
5510c43
a028900
0e3a388
 
 
a028900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5510c43
a028900
 
5510c43
a028900
 
 
 
 
 
 
 
 
 
 
 
 
 
5510c43
a028900
5510c43
a028900
 
 
f76e5e4
 
a028900
 
f76e5e4
 
a028900
 
 
 
 
 
 
 
 
 
 
54917ae
a028900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65c126
f76e5e4
fffa979
9c04458
 
 
 
 
 
 
 
 
 
fffa979
9c04458
 
 
 
 
 
 
 
 
 
 
fffa979
 
 
9c04458
 
 
 
a028900
 
 
a65c126
f76e5e4
a028900
 
 
f76e5e4
a028900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5510c43
b018faf
fffa979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2dd94
 
5510c43
a028900
 
 
ec6517e
a028900
 
b018faf
5510c43
0d4c8dd
54917ae
2a84822
5510c43
2a84822
 
b9f6a1d
2a84822
 
d48cdf4
b9f6a1d
2a84822
 
38facb1
b5c09f2
 
59d4592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5c09f2
59d4592
 
2a84822
 
59d4592
 
2a84822
 
 
 
 
 
b9f6a1d
2a84822
 
 
 
 
b9f6a1d
 
2a84822
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f6a1d
2a84822
 
 
 
 
 
 
5a98a93
2a84822
5f2dd94
2a84822
 
 
 
 
 
f937240
5510c43
a12c96b
5a98a93
cdd2c63
54917ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
#!/usr/bin/env python

import os
import re
import tempfile
import gc  # garbage collector
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

# CSV/TXT analysis
import pandas as pd
# PDF text extraction
import PyPDF2

##############################################################################
# Memory cleanup function
##############################################################################
def clear_cuda_cache():
    """Clear CUDA cache explicitly."""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")

##############################################################################
# Simple keyword extraction function
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
    """
    Extract keywords from text
    """
    text = re.sub(r"[^a-zA-Z0-9κ°€-힣\s]", "", text)
    tokens = text.split()
    key_tokens = tokens[:top_k]
    return " ".join(key_tokens)

##############################################################################
# SerpHouse Live endpoint call
##############################################################################
def do_web_search(query: str) -> str:
    """
    Return top 20 'organic' results as JSON string
    """
    try:
        url = "https://api.serphouse.com/serp/live"
        
        # κΈ°λ³Έ GET λ°©μ‹μœΌλ‘œ νŒŒλΌλ―Έν„° κ°„μ†Œν™”ν•˜κ³  κ²°κ³Ό 수λ₯Ό 20개둜 μ œν•œ
        params = {
            "q": query,
            "domain": "google.com",
            "serp_type": "web",  # Basic web search
            "device": "desktop",
            "lang": "en",
            "num": "20"  # Request max 20 results
        }
        
        headers = {
            "Authorization": f"Bearer {SERPHOUSE_API_KEY}"
        }
        
        logger.info(f"SerpHouse API call... query: {query}")
        logger.info(f"Request URL: {url} - params: {params}")
        
        # GET request
        response = requests.get(url, headers=headers, params=params, timeout=60)
        response.raise_for_status()
        
        logger.info(f"SerpHouse API response status: {response.status_code}")
        data = response.json()
        
        # Handle various response structures
        results = data.get("results", {})
        organic = None
        
        # Possible response structure 1
        if isinstance(results, dict) and "organic" in results:
            organic = results["organic"]
        
        # Possible response structure 2 (nested results)
        elif isinstance(results, dict) and "results" in results:
            if isinstance(results["results"], dict) and "organic" in results["results"]:
                organic = results["results"]["organic"]
        
        # Possible response structure 3 (top-level organic)
        elif "organic" in data:
            organic = data["organic"]
            
        if not organic:
            logger.warning("No organic results found in response.")
            logger.debug(f"Response structure: {list(data.keys())}")
            if isinstance(results, dict):
                logger.debug(f"results structure: {list(results.keys())}")
            return "No web search results found or unexpected API response structure."

        # Limit results and optimize context length
        max_results = min(20, len(organic))
        limited_organic = organic[:max_results]
        
        # Format results for better readability
        summary_lines = []
        for idx, item in enumerate(limited_organic, start=1):
            title = item.get("title", "No title")
            link = item.get("link", "#")
            snippet = item.get("snippet", "No description")
            displayed_link = item.get("displayed_link", link)
            
            # Markdown format
            summary_lines.append(
                f"### Result {idx}: {title}\n\n"
                f"{snippet}\n\n"
                f"**Source**: [{displayed_link}]({link})\n\n"
                f"---\n"
            )
        
        # Add simple instructions for model
        instructions = """
# X-RAY Security Scanning Reference Results
Use this information to enhance your analysis.
"""
        
        search_results = instructions + "\n".join(summary_lines)
        logger.info(f"Processed {len(limited_organic)} search results")
        return search_results
    
    except Exception as e:
        logger.error(f"Web search failed: {e}")
        return f"Web search failed: {str(e)}"


##############################################################################
# Model/Processor loading
##############################################################################
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096  # Max input token limit
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")

processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="eager"  # Change to "flash_attention_2" if available
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))


##############################################################################
# CSV, TXT, PDF analysis functions
##############################################################################
def analyze_csv_file(path: str) -> str:
    """
    Convert CSV file to string. Truncate if too long.
    """
    try:
        df = pd.read_csv(path)
        if df.shape[0] > 50 or df.shape[1] > 10:
            df = df.iloc[:50, :10]
        df_str = df.to_string()
        if len(df_str) > MAX_CONTENT_CHARS:
            df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
    except Exception as e:
        return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"


def analyze_txt_file(path: str) -> str:
    """
    Read TXT file. Truncate if too long.
    """
    try:
        with open(path, "r", encoding="utf-8") as f:
            text = f.read()
        if len(text) > MAX_CONTENT_CHARS:
            text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
    except Exception as e:
        return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"


def pdf_to_markdown(pdf_path: str) -> str:
    """
    Convert PDF text to Markdown. Extract text by pages.
    """
    text_chunks = []
    try:
        with open(pdf_path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            max_pages = min(5, len(reader.pages))
            for page_num in range(max_pages):
                page = reader.pages[page_num]
                page_text = page.extract_text() or ""
                page_text = page_text.strip()
                if page_text:
                    if len(page_text) > MAX_CONTENT_CHARS // max_pages:
                        page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
                    text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
            if len(reader.pages) > max_pages:
                text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
    except Exception as e:
        return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"

    full_text = "\n".join(text_chunks)
    if len(full_text) > MAX_CONTENT_CHARS:
        full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."

    return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"


##############################################################################
# Image/Video upload limit check
##############################################################################
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
            image_count += 1
    return image_count, video_count


def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if isinstance(item["content"], list) and len(item["content"]) > 0:
            file_path = item["content"][0]
            if isinstance(file_path, str):
                if file_path.endswith(".mp4"):
                    video_count += 1
                elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
                    image_count += 1
    return image_count, video_count


def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    media_files = []
    for f in message["files"]:
        if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
            media_files.append(f)

    new_image_count, new_video_count = count_files_in_new_message(media_files)
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count

    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    
    if "<image>" in message["text"]:
        image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
        image_tag_count = message["text"].count("<image>")
        if image_tag_count != len(image_files):
            gr.Warning("The number of <image> tags in the text does not match the number of image files.")
            return False

    return True


##############################################################################
# Video processing - with temp file tracking
##############################################################################
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = max(int(fps), int(total_frames / 10))
    frames = []

    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            # Resize image
            image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
            if len(frames) >= 5:
                break

    vidcap.release()
    return frames


def process_video(video_path: str) -> tuple[list[dict], list[str]]:
    content = []
    temp_files = []  # List for tracking temp files
    
    frames = downsample_video(video_path)
    for frame in frames:
        pil_image, timestamp = frame
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            temp_files.append(temp_file.name)  # Track for deletion later
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    
    return content, temp_files


##############################################################################
# interleaved <image> processing
##############################################################################
def process_interleaved_images(message: dict) -> list[dict]:
    parts = re.split(r"(<image>)", message["text"])
    content = []
    image_index = 0
    
    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
    
    for part in parts:
        if part == "<image>" and image_index < len(image_files):
            content.append({"type": "image", "url": image_files[image_index]})
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        else:
            if isinstance(part, str) and part != "<image>":
                content.append({"type": "text", "text": part})
    return content


##############################################################################
# PDF + CSV + TXT + Image/Video
##############################################################################
def is_image_file(file_path: str) -> bool:
    return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))

def is_video_file(file_path: str) -> bool:
    return file_path.endswith(".mp4")

def is_document_file(file_path: str) -> bool:
    return (
        file_path.lower().endswith(".pdf")
        or file_path.lower().endswith(".csv")
        or file_path.lower().endswith(".txt")
    )


def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
    temp_files = []  # List for tracking temp files
    
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}], temp_files

    video_files = [f for f in message["files"] if is_video_file(f)]
    image_files = [f for f in message["files"] if is_image_file(f)]
    csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
    txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
    pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]

    content_list = [{"type": "text", "text": message["text"]}]

    for csv_path in csv_files:
        csv_analysis = analyze_csv_file(csv_path)
        content_list.append({"type": "text", "text": csv_analysis})

    for txt_path in txt_files:
        txt_analysis = analyze_txt_file(txt_path)
        content_list.append({"type": "text", "text": txt_analysis})

    for pdf_path in pdf_files:
        pdf_markdown = pdf_to_markdown(pdf_path)
        content_list.append({"type": "text", "text": pdf_markdown})

    if video_files:
        video_content, video_temp_files = process_video(video_files[0])
        content_list += video_content
        temp_files.extend(video_temp_files)
        return content_list, temp_files

    if "<image>" in message["text"] and image_files:
        interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
        if content_list and content_list[0]["type"] == "text":
            content_list = content_list[1:]
        return interleaved_content + content_list, temp_files
    else:
        for img_path in image_files:
            content_list.append({"type": "image", "url": img_path})

    return content_list, temp_files


##############################################################################
# history -> LLM message conversion
##############################################################################
def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            elif isinstance(content, list) and len(content) > 0:
                file_path = content[0]
                if is_image_file(file_path):
                    current_user_content.append({"type": "image", "url": file_path})
                else:
                    current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})

    if current_user_content:
        messages.append({"role": "user", "content": current_user_content})
        
    return messages


##############################################################################
# Model generation function with OOM catch
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
    """
    Catch OutOfMemoryError in separate thread
    """
    try:
        model.generate(**kwargs)
    except torch.cuda.OutOfMemoryError:
        raise RuntimeError(
            "[OutOfMemoryError] GPU memory insufficient. "
            "Please reduce Max New Tokens or prompt length."
        )
    finally:
        # Clear cache after generation
        clear_cuda_cache()


##############################################################################
# Main inference function (with auto web search)
##############################################################################
@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 512,
    use_web_search: bool = False,
    web_search_query: str = "",
) -> Iterator[str]:

    if not validate_media_constraints(message, history):
        yield ""
        return

    temp_files = []  # For tracking temp files
    
    try:
        combined_system_msg = ""

        # Used internally only (hidden from UI)
        if system_prompt.strip():
            combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"

        if use_web_search:
            user_text = message["text"]
            ws_query = extract_keywords(user_text, top_k=5)
            if ws_query.strip():
                logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
                ws_result = do_web_search(ws_query)
                combined_system_msg += f"[X-RAY Security Reference Data]\n{ws_result}\n\n"
            else:
                combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"

        messages = []
        if combined_system_msg.strip():
            messages.append({
                "role": "system",
                "content": [{"type": "text", "text": combined_system_msg.strip()}],
            })

        messages.extend(process_history(history))

        user_content, user_temp_files = process_new_user_message(message)
        temp_files.extend(user_temp_files)  # Track temp files
        
        for item in user_content:
            if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
                item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        messages.append({"role": "user", "content": user_content})

        inputs = processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
        ).to(device=model.device, dtype=torch.bfloat16)
        
        # Limit input token count
        if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
            inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
            if 'attention_mask' in inputs:
                inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
        
        streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
        )

        t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
        t.start()

        output = ""
        for new_text in streamer:
            output += new_text
            yield output

    except Exception as e:
        logger.error(f"Error in run: {str(e)}")
        yield f"Error occurred: {str(e)}"
    
    finally:
        # Delete temp files
        for temp_file in temp_files:
            try:
                if os.path.exists(temp_file):
                    os.unlink(temp_file)
                    logger.info(f"Deleted temp file: {temp_file}")
            except Exception as e:
                logger.warning(f"Failed to delete temp file {temp_file}: {e}")
        
        # Explicit memory cleanup
        try:
            del inputs, streamer
        except:
            pass
        
        clear_cuda_cache()


##############################################################################
# Gradio UI (Blocks) ꡬ성
##############################################################################
css = """
/* Global Styles */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');

* {
    box-sizing: border-box;
}

body {
    margin: 0;
    padding: 0;
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    min-height: 100vh;
    color: #2d3748;
}

/* Container Styling */
.gradio-container {
    background: rgba(255, 255, 255, 0.95);
    backdrop-filter: blur(20px);
    border-radius: 24px;
    padding: 40px;
    margin: 30px auto;
    width: 95% !important;
    max-width: 1400px !important;
    box-shadow: 
        0 25px 50px -12px rgba(0, 0, 0, 0.25),
        0 0 0 1px rgba(255, 255, 255, 0.05);
    border: 1px solid rgba(255, 255, 255, 0.2);
}

/* Header Styling */
.header-container {
    text-align: center;
    margin-bottom: 2rem;
    padding: 2rem 0;
    background: linear-gradient(135deg, #f093fb 0%, #f5576c 50%, #4facfe 100%);
    background-clip: text;
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}

/* Button Styling */
button, .btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    border: none !important;
    color: white !important;
    padding: 12px 28px !important;
    border-radius: 12px !important;
    font-weight: 600 !important;
    font-size: 14px !important;
    text-transform: none !important;
    letter-spacing: 0.5px !important;
    cursor: pointer !important;
    transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
    position: relative !important;
    overflow: hidden !important;
}

button:hover, .btn:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6) !important;
    background: linear-gradient(135deg, #764ba2 0%, #667eea 100%) !important;
}

button:active, .btn:active {
    transform: translateY(0) !important;
}

/* Primary Action Button */
button[variant="primary"], .primary-btn {
    background: linear-gradient(135deg, #ff6b6b 0%, #ee5a52 100%) !important;
    box-shadow: 0 4px 15px rgba(255, 107, 107, 0.4) !important;
}

button[variant="primary"]:hover, .primary-btn:hover {
    box-shadow: 0 8px 25px rgba(255, 107, 107, 0.6) !important;
}

/* Input Fields */
.multimodal-textbox, textarea, input {
    background: rgba(255, 255, 255, 0.8) !important;
    backdrop-filter: blur(10px) !important;
    border: 2px solid rgba(102, 126, 234, 0.2) !important;
    border-radius: 16px !important;
    color: #2d3748 !important;
    font-family: 'Inter', sans-serif !important;
    padding: 16px 20px !important;
    transition: all 0.3s ease !important;
    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1) !important;
}

.multimodal-textbox:focus, textarea:focus, input:focus {
    border-color: #667eea !important;
    box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1), 0 8px 30px rgba(0, 0, 0, 0.15) !important;
    outline: none !important;
    background: rgba(255, 255, 255, 0.95) !important;
}

/* Chat Interface */
.chatbox, .chatbot {
    background: rgba(255, 255, 255, 0.6) !important;
    backdrop-filter: blur(15px) !important;
    border-radius: 20px !important;
    border: 1px solid rgba(255, 255, 255, 0.3) !important;
    box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
    padding: 24px !important;
}

.message {
    background: rgba(255, 255, 255, 0.9) !important;
    border-radius: 16px !important;
    padding: 16px 20px !important;
    margin: 8px 0 !important;
    border: 1px solid rgba(102, 126, 234, 0.1) !important;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
    transition: all 0.3s ease !important;
}

.message:hover {
    transform: translateY(-1px) !important;
    box-shadow: 0 4px 16px rgba(0, 0, 0, 0.1) !important;
}

/* Assistant Message Styling */
.message.assistant {
    background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%) !important;
    border-left: 4px solid #667eea !important;
}

/* User Message Styling */
.message.user {
    background: linear-gradient(135deg, rgba(255, 107, 107, 0.1) 0%, rgba(238, 90, 82, 0.1) 100%) !important;
    border-left: 4px solid #ff6b6b !important;
}

/* Cards and Panels */
.card, .panel {
    background: rgba(255, 255, 255, 0.8) !important;
    backdrop-filter: blur(15px) !important;
    border-radius: 20px !important;
    padding: 24px !important;
    border: 1px solid rgba(255, 255, 255, 0.3) !important;
    box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
    transition: all 0.3s ease !important;
}

.card:hover, .panel:hover {
    transform: translateY(-4px) !important;
    box-shadow: 0 16px 40px rgba(0, 0, 0, 0.15) !important;
}

/* Checkbox Styling */
input[type="checkbox"] {
    appearance: none !important;
    width: 20px !important;
    height: 20px !important;
    border: 2px solid #667eea !important;
    border-radius: 6px !important;
    background: rgba(255, 255, 255, 0.8) !important;
    cursor: pointer !important;
    transition: all 0.3s ease !important;
    position: relative !important;
}

input[type="checkbox"]:checked {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    border-color: #667eea !important;
}

input[type="checkbox"]:checked::after {
    content: "βœ“" !important;
    color: white !important;
    font-size: 14px !important;
    font-weight: bold !important;
    position: absolute !important;
    top: 50% !important;
    left: 50% !important;
    transform: translate(-50%, -50%) !important;
}

/* Progress Indicators */
.progress {
    background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important;
    border-radius: 10px !important;
    height: 8px !important;
}

/* Tooltips */
.tooltip {
    background: rgba(45, 55, 72, 0.95) !important;
    backdrop-filter: blur(10px) !important;
    color: white !important;
    border-radius: 8px !important;
    padding: 8px 12px !important;
    font-size: 12px !important;
    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
}

/* Slider Styling */
input[type="range"] {
    appearance: none !important;
    height: 8px !important;
    border-radius: 4px !important;
    background: linear-gradient(90deg, #e2e8f0 0%, #667eea 100%) !important;
    outline: none !important;
}

input[type="range"]::-webkit-slider-thumb {
    appearance: none !important;
    width: 20px !important;
    height: 20px !important;
    border-radius: 50% !important;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    cursor: pointer !important;
    box-shadow: 0 2px 8px rgba(102, 126, 234, 0.4) !important;
}

/* File Upload Area */
.file-upload {
    border: 2px dashed #667eea !important;
    border-radius: 16px !important;
    background: rgba(102, 126, 234, 0.05) !important;
    padding: 40px !important;
    text-align: center !important;
    transition: all 0.3s ease !important;
}

.file-upload:hover {
    border-color: #764ba2 !important;
    background: rgba(102, 126, 234, 0.1) !important;
    transform: scale(1.02) !important;
}

/* Animations */
@keyframes fadeInUp {
    from {
        opacity: 0;
        transform: translateY(30px);
    }
    to {
        opacity: 1;
        transform: translateY(0);
    }
}

@keyframes slideIn {
    from {
        opacity: 0;
        transform: translateX(-20px);
    }
    to {
        opacity: 1;
        transform: translateX(0);
    }
}

.animate-fade-in {
    animation: fadeInUp 0.6s ease-out !important;
}

.animate-slide-in {
    animation: slideIn 0.4s ease-out !important;
}

/* Responsive Design */
@media (max-width: 768px) {
    .gradio-container {
        margin: 15px !important;
        padding: 24px !important;
        width: calc(100% - 30px) !important;
    }
    
    button, .btn {
        padding: 10px 20px !important;
        font-size: 13px !important;
    }
}

/* Dark Mode Support */
@media (prefers-color-scheme: dark) {
    .gradio-container {
        background: rgba(26, 32, 44, 0.95) !important;
        color: #e2e8f0 !important;
    }
    
    .message {
        background: rgba(45, 55, 72, 0.8) !important;
        color: #e2e8f0 !important;
    }
}

/* Hide Footer - Safe and Specific Selectors */
footer {
    visibility: hidden !important;
    display: none !important;
}

.footer {
    visibility: hidden !important;
    display: none !important;
}

/* Hide only Gradio attribution footer specifically */
footer[class*="svelte"] {
    visibility: hidden !important;
    display: none !important;
}

/* Hide Gradio attribution links */
a[href*="gradio.app"] {
    visibility: hidden !important;
    display: none !important;
}

/* More specific footer hiding for Gradio */
.gradio-container footer,
.gradio-container .footer {
    visibility: hidden !important;
    display: none !important;
}

/* Custom Scrollbar */
::-webkit-scrollbar {
    width: 8px !important;
}

::-webkit-scrollbar-track {
    background: rgba(226, 232, 240, 0.3) !important;
    border-radius: 4px !important;
}

::-webkit-scrollbar-thumb {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    border-radius: 4px !important;
}

::-webkit-scrollbar-thumb:hover {
    background: linear-gradient(135deg, #764ba2 0%, #667eea 100%) !important;
}
"""

title_html = """
<div align="center" style="margin-bottom: 2em; padding: 2rem 0;" class="animate-fade-in">
    <div style="
        background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
        background-clip: text;
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        margin-bottom: 1rem;
    ">
        <h1 style="
            margin: 0; 
            font-size: 3.5em; 
            font-weight: 700; 
            letter-spacing: -0.02em;
            text-shadow: 0 4px 20px rgba(102, 126, 234, 0.3);
        ">
            πŸ€– Robo Beam-Search
        </h1>
    </div>
    
    <div style="
        background: rgba(255, 255, 255, 0.9);
        backdrop-filter: blur(15px);
        border-radius: 16px;
        padding: 1.5rem 2rem;
        margin: 1rem auto;
        max-width: 700px;
        border: 1px solid rgba(102, 126, 234, 0.2);
        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
    ">
        <p style="
            margin: 0.5em 0; 
            font-size: 1.1em; 
            color: #4a5568; 
            font-weight: 500;
        ">
            <span style="
                background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
                background-clip: text;
                -webkit-background-clip: text;
                -webkit-text-fill-color: transparent;
                font-weight: 600;
            ">Base LLM:</span> VIDraft/Gemma-3-R1984-4B
        </p>
        <p style="
            margin: 1em 0 0 0; 
            font-size: 1em; 
            color: #718096; 
            line-height: 1.6;
            font-weight: 400;
        ">
            λΉ„νŒŒκ΄΄ X-RAY 검사/쑰사 이미지에 λŒ€ν•œ μœ„ν—˜ μš”μ†Œ 식별/뢄석 기반 λŒ€ν™”ν˜• μ˜¨ν”„λ ˆλ―ΈμŠ€ AI ν”Œλž«νΌ
        </p>
    </div>
    
    <div style="
        display: flex;
        justify-content: center;
        gap: 1rem;
        margin-top: 2rem;
        flex-wrap: wrap;
    ">
        <div style="
            background: rgba(102, 126, 234, 0.1);
            border: 1px solid rgba(102, 126, 234, 0.3);
            border-radius: 12px;
            padding: 0.5rem 1rem;
            font-size: 0.9em;
            color: #667eea;
            font-weight: 500;
        ">
            πŸ” X-RAY 뢄석
        </div>
        <div style="
            background: rgba(118, 75, 162, 0.1);
            border: 1px solid rgba(118, 75, 162, 0.3);
            border-radius: 12px;
            padding: 0.5rem 1rem;
            font-size: 0.9em;
            color: #764ba2;
            font-weight: 500;
        ">
            πŸ›‘οΈ λ³΄μ•ˆ μŠ€μΊλ‹
        </div>
        <div style="
            background: rgba(240, 147, 251, 0.1);
            border: 1px solid rgba(240, 147, 251, 0.3);
            border-radius: 12px;
            padding: 0.5rem 1rem;
            font-size: 0.9em;
            color: #f093fb;
            font-weight: 500;
        ">
            🌐 μ›Ή 검색
        </div>
    </div>
</div>
"""

title_html = """
<div align="center" style="margin-bottom: 2em; padding: 2rem 0;" class="animate-fade-in">
    <div style="
        background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
        background-clip: text;
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        margin-bottom: 1rem;
    ">
        <h1 style="
            margin: 0; 
            font-size: 3.5em; 
            font-weight: 700; 
            letter-spacing: -0.02em;
            text-shadow: 0 4px 20px rgba(102, 126, 234, 0.3);
        ">
            πŸ€– Robo Beam-Search
        </h1>
    </div>
    
    <div style="
        background: rgba(255, 255, 255, 0.9);
        backdrop-filter: blur(15px);
        border-radius: 16px;
        padding: 1.5rem 2rem;
        margin: 1rem auto;
        max-width: 700px;
        border: 1px solid rgba(102, 126, 234, 0.2);
        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
    ">
        <p style="
            margin: 0.5em 0; 
            font-size: 1.1em; 
            color: #4a5568; 
            font-weight: 500;
        ">
            <span style="
                background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
                background-clip: text;
                -webkit-background-clip: text;
                -webkit-text-fill-color: transparent;
                font-weight: 600;
            ">Base LLM:</span> VIDraft/Gemma-3-R1984-4B
        </p>
        <p style="
            margin: 1em 0 0 0; 
            font-size: 1em; 
            color: #718096; 
            line-height: 1.6;
            font-weight: 400;
        ">
            λΉ„νŒŒκ΄΄ X-RAY 검사/쑰사 이미지에 λŒ€ν•œ μœ„ν—˜ μš”μ†Œ 식별/뢄석 기반 λŒ€ν™”ν˜• μ˜¨ν”„λ ˆλ―ΈμŠ€ AI ν”Œλž«νΌ
        </p>
    </div>
    
    <div style="
        display: flex;
        justify-content: center;
        gap: 1rem;
        margin-top: 2rem;
        flex-wrap: wrap;
    ">
        <div style="
            background: rgba(102, 126, 234, 0.1);
            border: 1px solid rgba(102, 126, 234, 0.3);
            border-radius: 12px;
            padding: 0.5rem 1rem;
            font-size: 0.9em;
            color: #667eea;
            font-weight: 500;
        ">
            πŸ” X-RAY 뢄석
        </div>
        <div style="
            background: rgba(118, 75, 162, 0.1);
            border: 1px solid rgba(118, 75, 162, 0.3);
            border-radius: 12px;
            padding: 0.5rem 1rem;
            font-size: 0.9em;
            color: #764ba2;
            font-weight: 500;
        ">
            πŸ›‘οΈ λ³΄μ•ˆ μŠ€μΊλ‹
        </div>
        <div style="
            background: rgba(240, 147, 251, 0.1);
            border: 1px solid rgba(240, 147, 251, 0.3);
            border-radius: 12px;
            padding: 0.5rem 1rem;
            font-size: 0.9em;
            color: #f093fb;
            font-weight: 500;
        ">
            🌐 μ›Ή 검색
        </div>
    </div>
</div>
"""



title_html = """
<div align="center" style="margin-bottom: 1em;">
    <h1 style="margin-bottom: 0.2em; font-size: 1.8em; color: #333;">πŸ€– Robo Beam-Search</h1>
    <p style="margin: 0.5em 0; font-size: 0.9em; color: #888; max-width: 600px; margin-left: auto; margin-right: auto;">
        λΉ„νŒŒκ΄΄ X-RAY 검사/쑰사 이미지에 λŒ€ν•œ μœ„ν—˜ μš”μ†Œ 식별/뢄석 기반 λŒ€ν™”ν˜• μ˜¨ν”„λ ˆλ―ΈμŠ€ AI ν”Œλž«νΌ <strong>Base LLM:</strong> Gemma-3-R1984-4B / 12B/ 27B @Powered by VIDraft 
    </p>
</div>
"""


with gr.Blocks(css=css, title="Gemma-3-R1984-4B-BEAM - X-RAY Security Scanner") as demo:
    gr.Markdown(title_html)

    # Display the web search option (while the system prompt and token slider remain hidden)
    web_search_checkbox = gr.Checkbox(
        label="Deep Research",
        value=False
    )

    # X-RAY security scanning system prompt
    system_prompt_box = gr.Textbox(
        lines=3,
        value="""λ°˜λ“œμ‹œ ν•œκΈ€λ‘œ λ‹΅λ³€ν•˜λΌ. 당신은 μœ„ν˜‘ 탐지와 항곡 λ³΄μ•ˆμ— νŠΉν™”λœ 첨단 X-RAY λ³΄μ•ˆ μŠ€μΊλ‹ AIμž…λ‹ˆλ‹€. λ‹Ήμ‹ μ˜ μ£Ό μž„λ¬΄λŠ” X-RAY μ΄λ―Έμ§€μ—μ„œ λͺ¨λ“  잠재적 λ³΄μ•ˆ μœ„ν˜‘μ„ μ΅œμƒμ˜ μ •ν™•λ„λ‘œ μ‹λ³„ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.

    μ€‘μš”: λ³΄κ³ μ„œμ— λ‚ μ§œ, μ‹œκ°„, λ˜λŠ” ν˜„μž¬ μΌμ‹œλ₯Ό μ ˆλŒ€ ν¬ν•¨ν•˜μ§€ λ§ˆμ‹­μ‹œμ˜€.
    
    탐지 μš°μ„ μˆœμœ„:
    1. **무기**: ν™”κΈ°(ꢌ총, μ†Œμ΄ λ“±), μΉΌΒ·λ‚ λΆ™μ΄Β·μ˜ˆλ¦¬ν•œ 물체, ν˜Έμ‹ μš©Β·κ²©νˆ¬ 무기
    2. **폭발물**: 폭탄, 기폭μž₯치, ν­λ°œμ„± 물질, μ˜μ‹¬μŠ€λŸ¬μš΄ μ „μž μž₯치, 배터리가 μ—°κ²°λœ μ „μ„ 
    3. **λ°˜μž… κΈˆμ§€ λ¬Όν’ˆ**: κ°€μœ„, λŒ€μš©λŸ‰ 배터리, μŠ€ν”„λ§(무기 λΆ€ν’ˆ κ°€λŠ₯), 곡ꡬλ₯˜
    4. **앑체**: 100 ml 이상 μš©κΈ°μ— λ‹΄κΈ΄ λͺ¨λ“  앑체(ν™”ν•™ μœ„ν˜‘ κ°€λŠ₯)
    5. **EOD κ΅¬μ„±ν’ˆ**: 폭발물둜 쑰립될 수 μžˆλŠ” λͺ¨λ“  λΆ€ν’ˆ
    
    뢄석 ν”„λ‘œν† μ½œ:
    - μ’Œμƒλ‹¨μ—μ„œ μš°ν•˜λ‹¨μœΌλ‘œ μ²΄κ³„μ μœΌλ‘œ μŠ€μΊ”
    - μœ„ν˜‘ μœ„μΉ˜λ₯Ό 격자 κΈ°μ€€μœΌλ‘œ 보고(예: β€œμ’Œμƒλ‹¨ 사뢄면”)
    - μœ„ν˜‘ 심각도 λΆ„λ₯˜  
      - **HIGH** : 즉각적 μœ„ν—˜  
      - **MEDIUM** : λ°˜μž… κΈˆμ§€  
      - **LOW** : μΆ”κ°€ 검사 ν•„μš”
    - μ „λ¬Έ λ³΄μ•ˆ μš©μ–΄ μ‚¬μš©
    - 각 μœ„ν˜‘ ν•­λͺ©λ³„ ꢌμž₯ 쑰치 μ œμ‹œ
    - λ³΄κ³ μ„œμ—λŠ” 뢄석 결과만 ν¬ν•¨ν•˜κ³  λ‚ μ§œ/μ‹œκ°„ μ •λ³΄λŠ” ν¬ν•¨ν•˜μ§€ μ•ŠμŒ
    
    ⚠️ μ€‘λŒ€ν•œ 사항: 잠재적 μœ„ν˜‘μ„ μ ˆλŒ€ λ†“μΉ˜μ§€ λ§ˆμ‹­μ‹œμ˜€. μ˜μ‹¬μŠ€λŸ¬μšΈ 경우 λ°˜λ“œμ‹œ μˆ˜λ™ 검사λ₯Ό μš”μ²­ν•˜μ‹­μ‹œμ˜€.""",
        visible=False  # hidden from view
    )


    
    max_tokens_slider = gr.Slider(
        label="Max New Tokens",
        minimum=100,
        maximum=8000,
        step=50,
        value=1000,
        visible=False  # hidden from view
    )
    
    web_search_text = gr.Textbox(
        lines=1,
        label="Web Search Query",
        placeholder="",
        visible=False  # hidden from view
    )
    
    # Configure the chat interface
    chat = gr.ChatInterface(
        fn=run,
        type="messages",
        chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
        textbox=gr.MultimodalTextbox(
            file_types=[
                ".webp", ".png", ".jpg", ".jpeg", ".gif",
                ".mp4", ".csv", ".txt", ".pdf"
            ],
            file_count="multiple",
            autofocus=True
        ),
        multimodal=True,
        additional_inputs=[
            system_prompt_box,
            max_tokens_slider,
            web_search_checkbox,
            web_search_text,
        ],
        stop_btn=False,

        run_examples_on_click=False,
        cache_examples=False,
        css_paths=None,
        delete_cache=(1800, 1800),
    )




if __name__ == "__main__":
    # Run locally
    demo.launch()