Spaces:
Running
Running
File size: 28,535 Bytes
d48cdf4 b9f6a1d d48cdf4 0ea9032 d48cdf4 507fad1 b9f6a1d 8fa1eef b9f6a1d c6c9a50 9dddfec b9f6a1d 9dddfec b9f6a1d 9dddfec 5510c43 0ea9032 5510c43 ac92569 5510c43 1e394d0 b9f6a1d 1e394d0 a12c96b b9f6a1d a12c96b 1e394d0 5510c43 b9f6a1d 5510c43 b9f6a1d 5510c43 d07df81 444ad96 5510c43 b9f6a1d 5510c43 444ad96 b9f6a1d 5510c43 d07df81 b9f6a1d d07df81 b9f6a1d 9aac221 d07df81 b9f6a1d d07df81 b9f6a1d 5510c43 d07df81 b9f6a1d d07df81 b9f6a1d d07df81 b9f6a1d d07df81 5510c43 b9f6a1d d07df81 b9f6a1d d07df81 5510c43 b9f6a1d 444ad96 b9f6a1d 5510c43 444ad96 f7748ac 444ad96 b9f6a1d 444ad96 f7748ac b9f6a1d f7748ac 444ad96 d07df81 b9f6a1d f7748ac 54917ae b9f6a1d f7748ac b9f6a1d f7748ac d07df81 5510c43 ac92569 b9f6a1d ac92569 42893c3 b9f6a1d a85231d 6977531 d48cdf4 2b2c22c b9f6a1d d48cdf4 507fad1 ac92569 b9f6a1d ac92569 8fa1eef ac92569 b9f6a1d ac92569 8fa1eef 5ff87dd 507fad1 8fa1eef 2b2c22c 8fa1eef ac92569 b9f6a1d ac92569 8fa1eef 507fad1 8fa1eef 2b2c22c 8fa1eef c6c9a50 ac92569 b9f6a1d ac92569 507fad1 c6c9a50 5ff87dd 507fad1 5ff87dd c6c9a50 507fad1 c6c9a50 ac92569 b9f6a1d ac92569 d48cdf4 5ff87dd d48cdf4 5ff87dd d48cdf4 8fa1eef 2b2c22c 8fa1eef d48cdf4 77b4bdf d48cdf4 5ff87dd 77b4bdf d48cdf4 ac92569 b9f6a1d ac92569 d48cdf4 ac92569 77f7fca 507fad1 d48cdf4 b9f6a1d 9dddfec d48cdf4 5ff87dd 507fad1 d48cdf4 9dddfec d48cdf4 b9f6a1d 9dddfec d48cdf4 507fad1 d48cdf4 b9f6a1d d48cdf4 9dddfec d48cdf4 ac92569 b9f6a1d ac92569 d48cdf4 5ff87dd d48cdf4 5ff87dd d48cdf4 c6c9a50 d48cdf4 ac92569 b9f6a1d ac92569 5ff87dd ac92569 5ff87dd 9dddfec b9f6a1d 9dddfec d48cdf4 9dddfec d48cdf4 5ff87dd 8fa1eef c6c9a50 77b4bdf 507fad1 77b4bdf 8fa1eef 77b4bdf 8fa1eef d48cdf4 c6c9a50 507fad1 c6c9a50 77b4bdf 9dddfec 77b4bdf 5ff87dd ac92569 1e394d0 9dddfec c6c9a50 8fa1eef 77b4bdf 9dddfec d48cdf4 5ff87dd ac92569 b9f6a1d ac92569 d48cdf4 507fad1 d48cdf4 5ff87dd 1e394d0 5ff87dd d48cdf4 9dddfec b9f6a1d 9dddfec b9f6a1d 9dddfec b9f6a1d 9dddfec b9f6a1d 9dddfec ac92569 b9f6a1d ac92569 d48cdf4 5510c43 1e394d0 d48cdf4 b9f6a1d 9dddfec 5ff87dd 0ea9032 b9f6a1d 0ea9032 1e394d0 0ea9032 54917ae 1e394d0 0ea9032 5510c43 5ff87dd 0ea9032 5ff87dd 0ea9032 9dddfec b9f6a1d 9dddfec 5ff87dd 9dddfec b9f6a1d 9dddfec 5ff87dd 0d4c8dd 5ff87dd 0ea9032 6977531 5ff87dd ac92569 5ff87dd b9f6a1d 9dddfec b9f6a1d 9dddfec b9f6a1d 9dddfec 6977531 0d4c8dd ac92569 b9f6a1d ac92569 d48cdf4 54917ae 14d290c ac92569 f9f2d2e 54917ae f9f2d2e ac92569 ec629d4 54917ae ec629d4 ac92569 f9f2d2e 54917ae f9f2d2e ac92569 f9f2d2e 54917ae f9f2d2e ac92569 f9f2d2e 54917ae f9f2d2e ac92569 f9f2d2e 54917ae f9f2d2e d48cdf4 54917ae f9f2d2e ac92569 f9f2d2e 54917ae f9f2d2e 54917ae f9f2d2e d48cdf4 ac92569 b9f6a1d ac92569 5510c43 b9f6a1d 5510c43 54917ae 0e3a388 54917ae 5510c43 5a98a93 0e3a388 5510c43 0e3a388 b9f6a1d 0e3a388 b9f6a1d 5510c43 b9f6a1d 5510c43 b9f6a1d f76e5e4 54917ae b9f6a1d f76e5e4 54917ae b9f6a1d a65c126 f76e5e4 a65c126 b9f6a1d a65c126 f76e5e4 54917ae b9f6a1d f76e5e4 5510c43 b018faf 5510c43 b9f6a1d b018faf 5510c43 0d4c8dd 54917ae 2a84822 5510c43 2a84822 b9f6a1d 2a84822 d48cdf4 b9f6a1d 2a84822 54917ae 2a84822 b9f6a1d 2a84822 b9f6a1d 2a84822 b9f6a1d 2a84822 5a98a93 2a84822 b9f6a1d 2a84822 b9f6a1d 5510c43 a12c96b 5a98a93 cdd2c63 54917ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
#!/usr/bin/env python
import os
import re
import tempfile
import gc # garbage collector
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
# CSV/TXT analysis
import pandas as pd
# PDF text extraction
import PyPDF2
##############################################################################
# Memory cleanup function
##############################################################################
def clear_cuda_cache():
"""Clear CUDA cache explicitly."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
##############################################################################
# Simple keyword extraction function
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
"""
Extract keywords from text
"""
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text)
tokens = text.split()
key_tokens = tokens[:top_k]
return " ".join(key_tokens)
##############################################################################
# SerpHouse Live endpoint call
##############################################################################
def do_web_search(query: str) -> str:
"""
Return top 20 'organic' results as JSON string
"""
try:
url = "https://api.serphouse.com/serp/live"
# 기본 GET 방식으로 파라미터 간소화하고 결과 수를 20개로 제한
params = {
"q": query,
"domain": "google.com",
"serp_type": "web", # Basic web search
"device": "desktop",
"lang": "en",
"num": "20" # Request max 20 results
}
headers = {
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
}
logger.info(f"SerpHouse API call... query: {query}")
logger.info(f"Request URL: {url} - params: {params}")
# GET request
response = requests.get(url, headers=headers, params=params, timeout=60)
response.raise_for_status()
logger.info(f"SerpHouse API response status: {response.status_code}")
data = response.json()
# Handle various response structures
results = data.get("results", {})
organic = None
# Possible response structure 1
if isinstance(results, dict) and "organic" in results:
organic = results["organic"]
# Possible response structure 2 (nested results)
elif isinstance(results, dict) and "results" in results:
if isinstance(results["results"], dict) and "organic" in results["results"]:
organic = results["results"]["organic"]
# Possible response structure 3 (top-level organic)
elif "organic" in data:
organic = data["organic"]
if not organic:
logger.warning("No organic results found in response.")
logger.debug(f"Response structure: {list(data.keys())}")
if isinstance(results, dict):
logger.debug(f"results structure: {list(results.keys())}")
return "No web search results found or unexpected API response structure."
# Limit results and optimize context length
max_results = min(20, len(organic))
limited_organic = organic[:max_results]
# Format results for better readability
summary_lines = []
for idx, item in enumerate(limited_organic, start=1):
title = item.get("title", "No title")
link = item.get("link", "#")
snippet = item.get("snippet", "No description")
displayed_link = item.get("displayed_link", link)
# Markdown format
summary_lines.append(
f"### Result {idx}: {title}\n\n"
f"{snippet}\n\n"
f"**Source**: [{displayed_link}]({link})\n\n"
f"---\n"
)
# Add simple instructions for model
instructions = """
# X-RAY Security Scanning Reference Results
Use this information to enhance your analysis.
"""
search_results = instructions + "\n".join(summary_lines)
logger.info(f"Processed {len(limited_organic)} search results")
return search_results
except Exception as e:
logger.error(f"Web search failed: {e}")
return f"Web search failed: {str(e)}"
##############################################################################
# Model/Processor loading
##############################################################################
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096 # Max input token limit
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager" # Change to "flash_attention_2" if available
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
##############################################################################
# CSV, TXT, PDF analysis functions
##############################################################################
def analyze_csv_file(path: str) -> str:
"""
Convert CSV file to string. Truncate if too long.
"""
try:
df = pd.read_csv(path)
if df.shape[0] > 50 or df.shape[1] > 10:
df = df.iloc[:50, :10]
df_str = df.to_string()
if len(df_str) > MAX_CONTENT_CHARS:
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
except Exception as e:
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
def analyze_txt_file(path: str) -> str:
"""
Read TXT file. Truncate if too long.
"""
try:
with open(path, "r", encoding="utf-8") as f:
text = f.read()
if len(text) > MAX_CONTENT_CHARS:
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
except Exception as e:
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
def pdf_to_markdown(pdf_path: str) -> str:
"""
Convert PDF text to Markdown. Extract text by pages.
"""
text_chunks = []
try:
with open(pdf_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
max_pages = min(5, len(reader.pages))
for page_num in range(max_pages):
page = reader.pages[page_num]
page_text = page.extract_text() or ""
page_text = page_text.strip()
if page_text:
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
if len(reader.pages) > max_pages:
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
except Exception as e:
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
full_text = "\n".join(text_chunks)
if len(full_text) > MAX_CONTENT_CHARS:
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
##############################################################################
# Image/Video upload limit check
##############################################################################
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if isinstance(item["content"], list) and len(item["content"]) > 0:
file_path = item["content"][0]
if isinstance(file_path, str):
if file_path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
media_files = []
for f in message["files"]:
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
media_files.append(f)
new_image_count, new_video_count = count_files_in_new_message(media_files)
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and videos is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("Using <image> tags with video files is not supported.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"]:
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
image_tag_count = message["text"].count("<image>")
if image_tag_count != len(image_files):
gr.Warning("The number of <image> tags in the text does not match the number of image files.")
return False
return True
##############################################################################
# Video processing - with temp file tracking
##############################################################################
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(int(fps), int(total_frames / 10))
frames = []
for i in range(0, total_frames, frame_interval):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize image
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
if len(frames) >= 5:
break
vidcap.release()
return frames
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
content = []
temp_files = [] # List for tracking temp files
frames = downsample_video(video_path)
for frame in frames:
pil_image, timestamp = frame
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
temp_files.append(temp_file.name) # Track for deletion later
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
return content, temp_files
##############################################################################
# interleaved <image> processing
##############################################################################
def process_interleaved_images(message: dict) -> list[dict]:
parts = re.split(r"(<image>)", message["text"])
content = []
image_index = 0
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
for part in parts:
if part == "<image>" and image_index < len(image_files):
content.append({"type": "image", "url": image_files[image_index]})
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
else:
if isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
return content
##############################################################################
# PDF + CSV + TXT + Image/Video
##############################################################################
def is_image_file(file_path: str) -> bool:
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
def is_video_file(file_path: str) -> bool:
return file_path.endswith(".mp4")
def is_document_file(file_path: str) -> bool:
return (
file_path.lower().endswith(".pdf")
or file_path.lower().endswith(".csv")
or file_path.lower().endswith(".txt")
)
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
temp_files = [] # List for tracking temp files
if not message["files"]:
return [{"type": "text", "text": message["text"]}], temp_files
video_files = [f for f in message["files"] if is_video_file(f)]
image_files = [f for f in message["files"] if is_image_file(f)]
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
content_list = [{"type": "text", "text": message["text"]}]
for csv_path in csv_files:
csv_analysis = analyze_csv_file(csv_path)
content_list.append({"type": "text", "text": csv_analysis})
for txt_path in txt_files:
txt_analysis = analyze_txt_file(txt_path)
content_list.append({"type": "text", "text": txt_analysis})
for pdf_path in pdf_files:
pdf_markdown = pdf_to_markdown(pdf_path)
content_list.append({"type": "text", "text": pdf_markdown})
if video_files:
video_content, video_temp_files = process_video(video_files[0])
content_list += video_content
temp_files.extend(video_temp_files)
return content_list, temp_files
if "<image>" in message["text"] and image_files:
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
if content_list and content_list[0]["type"] == "text":
content_list = content_list[1:]
return interleaved_content + content_list, temp_files
else:
for img_path in image_files:
content_list.append({"type": "image", "url": img_path})
return content_list, temp_files
##############################################################################
# history -> LLM message conversion
##############################################################################
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
elif isinstance(content, list) and len(content) > 0:
file_path = content[0]
if is_image_file(file_path):
current_user_content.append({"type": "image", "url": file_path})
else:
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
return messages
##############################################################################
# Model generation function with OOM catch
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
"""
Catch OutOfMemoryError in separate thread
"""
try:
model.generate(**kwargs)
except torch.cuda.OutOfMemoryError:
raise RuntimeError(
"[OutOfMemoryError] GPU memory insufficient. "
"Please reduce Max New Tokens or prompt length."
)
finally:
# Clear cache after generation
clear_cuda_cache()
##############################################################################
# Main inference function (with auto web search)
##############################################################################
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 512,
use_web_search: bool = False,
web_search_query: str = "",
) -> Iterator[str]:
if not validate_media_constraints(message, history):
yield ""
return
temp_files = [] # For tracking temp files
try:
combined_system_msg = ""
# Used internally only (hidden from UI)
if system_prompt.strip():
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"
if use_web_search:
user_text = message["text"]
ws_query = extract_keywords(user_text, top_k=5)
if ws_query.strip():
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
ws_result = do_web_search(ws_query)
combined_system_msg += f"[X-RAY Security Reference Data]\n{ws_result}\n\n"
else:
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
messages = []
if combined_system_msg.strip():
messages.append({
"role": "system",
"content": [{"type": "text", "text": combined_system_msg.strip()}],
})
messages.extend(process_history(history))
user_content, user_temp_files = process_new_user_message(message)
temp_files.extend(user_temp_files) # Track temp files
for item in user_content:
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
messages.append({"role": "user", "content": user_content})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
# Limit input token count
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
if 'attention_mask' in inputs:
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
)
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
t.start()
output = ""
for new_text in streamer:
output += new_text
yield output
except Exception as e:
logger.error(f"Error in run: {str(e)}")
yield f"Error occurred: {str(e)}"
finally:
# Delete temp files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
logger.info(f"Deleted temp file: {temp_file}")
except Exception as e:
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
# Explicit memory cleanup
try:
del inputs, streamer
except:
pass
clear_cuda_cache()
##############################################################################
# X-RAY security scanning examples
##############################################################################
examples = [
[
{
"text": "Analyze this X-RAY image for any prohibited items or security threats. Identify all weapons, explosives, batteries, sharp objects, and liquids over 100ml.",
"files": ["assets/additional-examples/beam1.png"],
}
],
[
{
"text": "Perform a comprehensive security scan on this luggage X-RAY. List all detected threats with severity levels (HIGH/MEDIUM/LOW).",
"files": ["assets/additional-examples/beam2.png"],
}
],
[
{
"text": "Compare these two X-RAY scans. Which one contains more security threats? Provide detailed analysis of prohibited items in each.",
"files": ["assets/additional-examples/beam1.png", "assets/additional-examples/beam2.png"],
}
],
[
{
"text": "Is this bag safe for air travel? Check for: guns, knives, bombs, batteries, scissors, springs, and containers over 100ml.",
"files": ["assets/additional-examples/beam1.png"],
}
],
[
{
"text": "Security checkpoint analysis: Identify any EOD (Explosive Ordnance Disposal) related items or components that could be assembled into weapons.",
"files": ["assets/additional-examples/beam2.png"],
}
],
[
{
"text": "Quick scan for immediate threats: Focus on firearms, bladed weapons, and explosive materials only.",
"files": ["assets/additional-examples/beam1.png"],
}
],
[
{
"text": "Detailed inspection required: Check for concealed weapons, electronic devices with large batteries, and any suspicious dense materials.",
"files": ["assets/additional-examples/beam2.png"],
}
],
[
{
"text": "Training mode: Identify and explain why each detected item is considered a security threat according to TSA/aviation security standards.",
"files": ["assets/additional-examples/beam1.png"],
}
],
[
{
"text": "Border security check: Scan for contraband, weapons, and any items that violate international travel regulations.",
"files": ["assets/additional-examples/beam2.png"],
}
],
[
{
"text": "Emergency protocol: Priority scan for immediate threats - explosives, firearms, and large bladed weapons only. Report findings urgently.",
"files": ["assets/additional-examples/beam1.png"],
}
],
]
##############################################################################
# Gradio UI (Blocks) 구성
##############################################################################
css = """
.gradio-container {
background: white;
padding: 30px 40px;
margin: 20px auto;
width: 100% !important;
max-width: none !important;
}
.fillable {
width: 100% !important;
max-width: 100% !important;
}
body {
background: white;
margin: 0;
padding: 0;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: #333;
}
button, .btn {
background: transparent !important;
border: 1px solid #ddd;
color: #333;
padding: 12px 24px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 1px;
cursor: pointer;
}
button:hover, .btn:hover {
background: rgba(0, 0, 0, 0.05) !important;
}
h1, h2, h3 {
color: #333;
}
.multimodal-textbox, textarea, input {
background: rgba(255, 255, 255, 0.5) !important;
border: 1px solid #ddd;
color: #333;
}
.chatbox, .chatbot, .message {
background: transparent !important;
}
#examples_container, .examples-container {
margin: auto;
width: 90%;
background: transparent !important;
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;">Gemma-3-R1984-4B-BEAM</h1>
"""
with gr.Blocks(css=css, title="Gemma-3-R1984-4B-BEAM - X-RAY Security Scanner") as demo:
gr.Markdown(title_html)
# Display the web search option (while the system prompt and token slider remain hidden)
web_search_checkbox = gr.Checkbox(
label="Deep Research",
value=False
)
# X-RAY security scanning system prompt
system_prompt_box = gr.Textbox(
lines=3,
value="""You are an advanced X-RAY security scanning AI specialized in threat detection and aviation security. Your primary mission is to identify ALL potential security threats in X-RAY images with extreme precision.
DETECTION PRIORITIES:
1. WEAPONS: Firearms (guns, pistols, rifles), knives, blades, sharp objects, martial arts weapons
2. EXPLOSIVES: Bombs, detonators, explosive materials, suspicious electronics, wires with batteries
3. PROHIBITED ITEMS: Scissors, large batteries, springs (potential weapon components), tools
4. LIQUIDS: Any container over 100ml (potential chemical threats)
5. EOD COMPONENTS: Any items that could be assembled into explosive devices
ANALYSIS PROTOCOL:
- Scan systematically from top-left to bottom-right
- Report location of threats using grid references (e.g., "upper-left quadrant")
- Classify threat severity: HIGH (immediate danger), MEDIUM (prohibited), LOW (requires inspection)
- Use professional security terminology
- Provide recommended actions for each threat
CRITICAL: Never miss a potential threat. When in doubt, flag for manual inspection.""",
visible=False # hidden from view
)
max_tokens_slider = gr.Slider(
label="Max New Tokens",
minimum=100,
maximum=8000,
step=50,
value=1000,
visible=False # hidden from view
)
web_search_text = gr.Textbox(
lines=1,
label="Web Search Query",
placeholder="",
visible=False # hidden from view
)
# Configure the chat interface
chat = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=[
".webp", ".png", ".jpg", ".jpeg", ".gif",
".mp4", ".csv", ".txt", ".pdf"
],
file_count="multiple",
autofocus=True
),
multimodal=True,
additional_inputs=[
system_prompt_box,
max_tokens_slider,
web_search_checkbox,
web_search_text,
],
stop_btn=False,
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths=None,
delete_cache=(1800, 1800),
)
# Example section - since examples are already set in ChatInterface, this is for display only
with gr.Row(elem_id="examples_row"):
with gr.Column(scale=12, elem_id="examples_container"):
pass
if __name__ == "__main__":
# Run locally
demo.launch() |