File size: 28,535 Bytes
d48cdf4
 
 
 
 
b9f6a1d
d48cdf4
 
0ea9032
 
d48cdf4
 
 
 
 
 
 
507fad1
b9f6a1d
8fa1eef
b9f6a1d
c6c9a50
 
9dddfec
b9f6a1d
9dddfec
 
b9f6a1d
9dddfec
 
 
 
5510c43
0ea9032
5510c43
ac92569
5510c43
1e394d0
b9f6a1d
1e394d0
 
a12c96b
b9f6a1d
a12c96b
 
1e394d0
 
 
 
5510c43
b9f6a1d
5510c43
 
 
b9f6a1d
5510c43
 
 
d07df81
444ad96
5510c43
 
 
b9f6a1d
5510c43
444ad96
b9f6a1d
5510c43
d07df81
 
 
 
 
b9f6a1d
 
d07df81
b9f6a1d
9aac221
d07df81
 
b9f6a1d
d07df81
 
b9f6a1d
5510c43
d07df81
 
b9f6a1d
d07df81
 
 
b9f6a1d
d07df81
 
 
 
b9f6a1d
d07df81
 
 
5510c43
b9f6a1d
 
d07df81
b9f6a1d
d07df81
5510c43
b9f6a1d
444ad96
 
 
b9f6a1d
5510c43
444ad96
 
 
 
f7748ac
444ad96
b9f6a1d
444ad96
f7748ac
 
b9f6a1d
f7748ac
444ad96
d07df81
b9f6a1d
f7748ac
54917ae
b9f6a1d
f7748ac
 
 
b9f6a1d
f7748ac
d07df81
5510c43
 
 
 
 
ac92569
b9f6a1d
ac92569
42893c3
b9f6a1d
a85231d
6977531
d48cdf4
 
2b2c22c
 
 
b9f6a1d
d48cdf4
 
 
507fad1
ac92569
b9f6a1d
ac92569
8fa1eef
ac92569
b9f6a1d
ac92569
8fa1eef
 
5ff87dd
 
507fad1
8fa1eef
 
2b2c22c
8fa1eef
 
 
 
 
ac92569
b9f6a1d
ac92569
8fa1eef
 
507fad1
8fa1eef
 
2b2c22c
8fa1eef
 
 
 
c6c9a50
ac92569
b9f6a1d
ac92569
507fad1
c6c9a50
 
 
5ff87dd
 
 
507fad1
 
 
5ff87dd
 
 
 
 
c6c9a50
 
 
507fad1
 
 
 
 
 
c6c9a50
ac92569
b9f6a1d
ac92569
d48cdf4
 
 
 
 
 
5ff87dd
d48cdf4
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
 
d48cdf4
 
 
 
8fa1eef
 
2b2c22c
8fa1eef
 
 
d48cdf4
 
 
77b4bdf
d48cdf4
 
 
 
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
 
77b4bdf
d48cdf4
 
 
ac92569
b9f6a1d
ac92569
d48cdf4
 
 
 
ac92569
77f7fca
507fad1
d48cdf4
 
 
 
 
b9f6a1d
9dddfec
d48cdf4
 
 
5ff87dd
 
507fad1
d48cdf4
 
 
 
9dddfec
d48cdf4
b9f6a1d
9dddfec
d48cdf4
507fad1
 
d48cdf4
 
b9f6a1d
d48cdf4
 
9dddfec
 
d48cdf4
 
ac92569
b9f6a1d
ac92569
d48cdf4
 
 
 
5ff87dd
 
 
d48cdf4
5ff87dd
 
d48cdf4
 
 
c6c9a50
 
 
d48cdf4
 
 
ac92569
b9f6a1d
ac92569
5ff87dd
 
 
 
 
 
 
ac92569
 
 
 
 
 
5ff87dd
9dddfec
b9f6a1d
9dddfec
d48cdf4
9dddfec
d48cdf4
5ff87dd
 
8fa1eef
 
c6c9a50
77b4bdf
507fad1
77b4bdf
8fa1eef
 
 
77b4bdf
8fa1eef
 
 
d48cdf4
c6c9a50
507fad1
 
c6c9a50
77b4bdf
9dddfec
 
 
 
77b4bdf
5ff87dd
 
ac92569
1e394d0
9dddfec
c6c9a50
8fa1eef
 
77b4bdf
9dddfec
d48cdf4
5ff87dd
ac92569
b9f6a1d
ac92569
d48cdf4
 
507fad1
d48cdf4
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
1e394d0
5ff87dd
 
 
d48cdf4
 
 
9dddfec
b9f6a1d
9dddfec
 
 
b9f6a1d
9dddfec
 
 
 
 
b9f6a1d
 
9dddfec
 
b9f6a1d
9dddfec
 
 
ac92569
b9f6a1d
ac92569
d48cdf4
5510c43
 
 
 
 
 
 
 
1e394d0
d48cdf4
 
 
 
b9f6a1d
9dddfec
5ff87dd
0ea9032
 
b9f6a1d
0ea9032
 
 
1e394d0
 
 
0ea9032
 
 
54917ae
1e394d0
0ea9032
5510c43
5ff87dd
0ea9032
 
 
 
 
 
5ff87dd
0ea9032
9dddfec
b9f6a1d
9dddfec
5ff87dd
 
 
 
 
 
 
 
 
 
 
 
9dddfec
b9f6a1d
9dddfec
 
 
 
 
5ff87dd
 
0d4c8dd
5ff87dd
 
 
0ea9032
6977531
5ff87dd
 
 
 
 
 
ac92569
5ff87dd
 
b9f6a1d
9dddfec
 
b9f6a1d
9dddfec
 
 
 
 
 
 
 
b9f6a1d
9dddfec
 
 
 
 
 
6977531
 
0d4c8dd
ac92569
b9f6a1d
ac92569
d48cdf4
 
 
54917ae
 
14d290c
ac92569
f9f2d2e
 
54917ae
 
f9f2d2e
ac92569
ec629d4
 
54917ae
 
ec629d4
ac92569
f9f2d2e
 
54917ae
 
f9f2d2e
ac92569
f9f2d2e
 
54917ae
 
f9f2d2e
ac92569
f9f2d2e
 
54917ae
 
f9f2d2e
ac92569
f9f2d2e
 
54917ae
 
f9f2d2e
 
d48cdf4
 
54917ae
 
f9f2d2e
ac92569
f9f2d2e
 
54917ae
 
f9f2d2e
 
 
 
54917ae
 
f9f2d2e
 
d48cdf4
 
ac92569
b9f6a1d
ac92569
5510c43
 
b9f6a1d
5510c43
54917ae
0e3a388
54917ae
5510c43
5a98a93
0e3a388
 
5510c43
0e3a388
b9f6a1d
0e3a388
 
b9f6a1d
 
5510c43
 
b9f6a1d
 
 
5510c43
 
 
 
 
 
 
b9f6a1d
f76e5e4
 
54917ae
b9f6a1d
f76e5e4
 
54917ae
b9f6a1d
 
 
a65c126
f76e5e4
a65c126
b9f6a1d
a65c126
f76e5e4
54917ae
 
 
b9f6a1d
f76e5e4
5510c43
b018faf
5510c43
b9f6a1d
b018faf
5510c43
0d4c8dd
54917ae
2a84822
5510c43
2a84822
 
b9f6a1d
2a84822
 
d48cdf4
b9f6a1d
2a84822
 
54917ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a84822
 
 
 
 
 
 
 
b9f6a1d
2a84822
 
 
 
 
b9f6a1d
 
2a84822
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f6a1d
2a84822
 
 
 
 
 
 
5a98a93
2a84822
b9f6a1d
2a84822
 
 
 
 
 
 
 
 
 
b9f6a1d
5510c43
a12c96b
5a98a93
cdd2c63
54917ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
#!/usr/bin/env python

import os
import re
import tempfile
import gc  # garbage collector
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

# CSV/TXT analysis
import pandas as pd
# PDF text extraction
import PyPDF2

##############################################################################
# Memory cleanup function
##############################################################################
def clear_cuda_cache():
    """Clear CUDA cache explicitly."""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")

##############################################################################
# Simple keyword extraction function
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
    """
    Extract keywords from text
    """
    text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text)
    tokens = text.split()
    key_tokens = tokens[:top_k]
    return " ".join(key_tokens)

##############################################################################
# SerpHouse Live endpoint call
##############################################################################
def do_web_search(query: str) -> str:
    """
    Return top 20 'organic' results as JSON string
    """
    try:
        url = "https://api.serphouse.com/serp/live"
        
        # 기본 GET 방식으로 파라미터 간소화하고 결과 수를 20개로 제한
        params = {
            "q": query,
            "domain": "google.com",
            "serp_type": "web",  # Basic web search
            "device": "desktop",
            "lang": "en",
            "num": "20"  # Request max 20 results
        }
        
        headers = {
            "Authorization": f"Bearer {SERPHOUSE_API_KEY}"
        }
        
        logger.info(f"SerpHouse API call... query: {query}")
        logger.info(f"Request URL: {url} - params: {params}")
        
        # GET request
        response = requests.get(url, headers=headers, params=params, timeout=60)
        response.raise_for_status()
        
        logger.info(f"SerpHouse API response status: {response.status_code}")
        data = response.json()
        
        # Handle various response structures
        results = data.get("results", {})
        organic = None
        
        # Possible response structure 1
        if isinstance(results, dict) and "organic" in results:
            organic = results["organic"]
        
        # Possible response structure 2 (nested results)
        elif isinstance(results, dict) and "results" in results:
            if isinstance(results["results"], dict) and "organic" in results["results"]:
                organic = results["results"]["organic"]
        
        # Possible response structure 3 (top-level organic)
        elif "organic" in data:
            organic = data["organic"]
            
        if not organic:
            logger.warning("No organic results found in response.")
            logger.debug(f"Response structure: {list(data.keys())}")
            if isinstance(results, dict):
                logger.debug(f"results structure: {list(results.keys())}")
            return "No web search results found or unexpected API response structure."

        # Limit results and optimize context length
        max_results = min(20, len(organic))
        limited_organic = organic[:max_results]
        
        # Format results for better readability
        summary_lines = []
        for idx, item in enumerate(limited_organic, start=1):
            title = item.get("title", "No title")
            link = item.get("link", "#")
            snippet = item.get("snippet", "No description")
            displayed_link = item.get("displayed_link", link)
            
            # Markdown format
            summary_lines.append(
                f"### Result {idx}: {title}\n\n"
                f"{snippet}\n\n"
                f"**Source**: [{displayed_link}]({link})\n\n"
                f"---\n"
            )
        
        # Add simple instructions for model
        instructions = """
# X-RAY Security Scanning Reference Results
Use this information to enhance your analysis.
"""
        
        search_results = instructions + "\n".join(summary_lines)
        logger.info(f"Processed {len(limited_organic)} search results")
        return search_results
    
    except Exception as e:
        logger.error(f"Web search failed: {e}")
        return f"Web search failed: {str(e)}"


##############################################################################
# Model/Processor loading
##############################################################################
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096  # Max input token limit
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")

processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="eager"  # Change to "flash_attention_2" if available
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))


##############################################################################
# CSV, TXT, PDF analysis functions
##############################################################################
def analyze_csv_file(path: str) -> str:
    """
    Convert CSV file to string. Truncate if too long.
    """
    try:
        df = pd.read_csv(path)
        if df.shape[0] > 50 or df.shape[1] > 10:
            df = df.iloc[:50, :10]
        df_str = df.to_string()
        if len(df_str) > MAX_CONTENT_CHARS:
            df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
    except Exception as e:
        return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"


def analyze_txt_file(path: str) -> str:
    """
    Read TXT file. Truncate if too long.
    """
    try:
        with open(path, "r", encoding="utf-8") as f:
            text = f.read()
        if len(text) > MAX_CONTENT_CHARS:
            text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
    except Exception as e:
        return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"


def pdf_to_markdown(pdf_path: str) -> str:
    """
    Convert PDF text to Markdown. Extract text by pages.
    """
    text_chunks = []
    try:
        with open(pdf_path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            max_pages = min(5, len(reader.pages))
            for page_num in range(max_pages):
                page = reader.pages[page_num]
                page_text = page.extract_text() or ""
                page_text = page_text.strip()
                if page_text:
                    if len(page_text) > MAX_CONTENT_CHARS // max_pages:
                        page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
                    text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
            if len(reader.pages) > max_pages:
                text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
    except Exception as e:
        return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"

    full_text = "\n".join(text_chunks)
    if len(full_text) > MAX_CONTENT_CHARS:
        full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."

    return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"


##############################################################################
# Image/Video upload limit check
##############################################################################
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
            image_count += 1
    return image_count, video_count


def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if isinstance(item["content"], list) and len(item["content"]) > 0:
            file_path = item["content"][0]
            if isinstance(file_path, str):
                if file_path.endswith(".mp4"):
                    video_count += 1
                elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
                    image_count += 1
    return image_count, video_count


def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    media_files = []
    for f in message["files"]:
        if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
            media_files.append(f)

    new_image_count, new_video_count = count_files_in_new_message(media_files)
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count

    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    
    if "<image>" in message["text"]:
        image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
        image_tag_count = message["text"].count("<image>")
        if image_tag_count != len(image_files):
            gr.Warning("The number of <image> tags in the text does not match the number of image files.")
            return False

    return True


##############################################################################
# Video processing - with temp file tracking
##############################################################################
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = max(int(fps), int(total_frames / 10))
    frames = []

    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            # Resize image
            image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
            if len(frames) >= 5:
                break

    vidcap.release()
    return frames


def process_video(video_path: str) -> tuple[list[dict], list[str]]:
    content = []
    temp_files = []  # List for tracking temp files
    
    frames = downsample_video(video_path)
    for frame in frames:
        pil_image, timestamp = frame
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            temp_files.append(temp_file.name)  # Track for deletion later
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    
    return content, temp_files


##############################################################################
# interleaved <image> processing
##############################################################################
def process_interleaved_images(message: dict) -> list[dict]:
    parts = re.split(r"(<image>)", message["text"])
    content = []
    image_index = 0
    
    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
    
    for part in parts:
        if part == "<image>" and image_index < len(image_files):
            content.append({"type": "image", "url": image_files[image_index]})
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        else:
            if isinstance(part, str) and part != "<image>":
                content.append({"type": "text", "text": part})
    return content


##############################################################################
# PDF + CSV + TXT + Image/Video
##############################################################################
def is_image_file(file_path: str) -> bool:
    return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))

def is_video_file(file_path: str) -> bool:
    return file_path.endswith(".mp4")

def is_document_file(file_path: str) -> bool:
    return (
        file_path.lower().endswith(".pdf")
        or file_path.lower().endswith(".csv")
        or file_path.lower().endswith(".txt")
    )


def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
    temp_files = []  # List for tracking temp files
    
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}], temp_files

    video_files = [f for f in message["files"] if is_video_file(f)]
    image_files = [f for f in message["files"] if is_image_file(f)]
    csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
    txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
    pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]

    content_list = [{"type": "text", "text": message["text"]}]

    for csv_path in csv_files:
        csv_analysis = analyze_csv_file(csv_path)
        content_list.append({"type": "text", "text": csv_analysis})

    for txt_path in txt_files:
        txt_analysis = analyze_txt_file(txt_path)
        content_list.append({"type": "text", "text": txt_analysis})

    for pdf_path in pdf_files:
        pdf_markdown = pdf_to_markdown(pdf_path)
        content_list.append({"type": "text", "text": pdf_markdown})

    if video_files:
        video_content, video_temp_files = process_video(video_files[0])
        content_list += video_content
        temp_files.extend(video_temp_files)
        return content_list, temp_files

    if "<image>" in message["text"] and image_files:
        interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
        if content_list and content_list[0]["type"] == "text":
            content_list = content_list[1:]
        return interleaved_content + content_list, temp_files
    else:
        for img_path in image_files:
            content_list.append({"type": "image", "url": img_path})

    return content_list, temp_files


##############################################################################
# history -> LLM message conversion
##############################################################################
def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            elif isinstance(content, list) and len(content) > 0:
                file_path = content[0]
                if is_image_file(file_path):
                    current_user_content.append({"type": "image", "url": file_path})
                else:
                    current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})

    if current_user_content:
        messages.append({"role": "user", "content": current_user_content})
        
    return messages


##############################################################################
# Model generation function with OOM catch
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
    """
    Catch OutOfMemoryError in separate thread
    """
    try:
        model.generate(**kwargs)
    except torch.cuda.OutOfMemoryError:
        raise RuntimeError(
            "[OutOfMemoryError] GPU memory insufficient. "
            "Please reduce Max New Tokens or prompt length."
        )
    finally:
        # Clear cache after generation
        clear_cuda_cache()


##############################################################################
# Main inference function (with auto web search)
##############################################################################
@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 512,
    use_web_search: bool = False,
    web_search_query: str = "",
) -> Iterator[str]:

    if not validate_media_constraints(message, history):
        yield ""
        return

    temp_files = []  # For tracking temp files
    
    try:
        combined_system_msg = ""

        # Used internally only (hidden from UI)
        if system_prompt.strip():
            combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"

        if use_web_search:
            user_text = message["text"]
            ws_query = extract_keywords(user_text, top_k=5)
            if ws_query.strip():
                logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
                ws_result = do_web_search(ws_query)
                combined_system_msg += f"[X-RAY Security Reference Data]\n{ws_result}\n\n"
            else:
                combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"

        messages = []
        if combined_system_msg.strip():
            messages.append({
                "role": "system",
                "content": [{"type": "text", "text": combined_system_msg.strip()}],
            })

        messages.extend(process_history(history))

        user_content, user_temp_files = process_new_user_message(message)
        temp_files.extend(user_temp_files)  # Track temp files
        
        for item in user_content:
            if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
                item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        messages.append({"role": "user", "content": user_content})

        inputs = processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
        ).to(device=model.device, dtype=torch.bfloat16)
        
        # Limit input token count
        if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
            inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
            if 'attention_mask' in inputs:
                inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
        
        streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
        )

        t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
        t.start()

        output = ""
        for new_text in streamer:
            output += new_text
            yield output

    except Exception as e:
        logger.error(f"Error in run: {str(e)}")
        yield f"Error occurred: {str(e)}"
    
    finally:
        # Delete temp files
        for temp_file in temp_files:
            try:
                if os.path.exists(temp_file):
                    os.unlink(temp_file)
                    logger.info(f"Deleted temp file: {temp_file}")
            except Exception as e:
                logger.warning(f"Failed to delete temp file {temp_file}: {e}")
        
        # Explicit memory cleanup
        try:
            del inputs, streamer
        except:
            pass
        
        clear_cuda_cache()



##############################################################################
# X-RAY security scanning examples
##############################################################################
examples = [
    [
        {
            "text": "Analyze this X-RAY image for any prohibited items or security threats. Identify all weapons, explosives, batteries, sharp objects, and liquids over 100ml.",
            "files": ["assets/additional-examples/beam1.png"],
        }
    ],
    [
        {
            "text": "Perform a comprehensive security scan on this luggage X-RAY. List all detected threats with severity levels (HIGH/MEDIUM/LOW).",
            "files": ["assets/additional-examples/beam2.png"],
        }
    ],
    [
        {
            "text": "Compare these two X-RAY scans. Which one contains more security threats? Provide detailed analysis of prohibited items in each.",
            "files": ["assets/additional-examples/beam1.png", "assets/additional-examples/beam2.png"],
        }
    ],
    [
        {
            "text": "Is this bag safe for air travel? Check for: guns, knives, bombs, batteries, scissors, springs, and containers over 100ml.",
            "files": ["assets/additional-examples/beam1.png"],
        }
    ],
    [
        {
            "text": "Security checkpoint analysis: Identify any EOD (Explosive Ordnance Disposal) related items or components that could be assembled into weapons.",
            "files": ["assets/additional-examples/beam2.png"],
        }
    ],
    [
        {
            "text": "Quick scan for immediate threats: Focus on firearms, bladed weapons, and explosive materials only.",
            "files": ["assets/additional-examples/beam1.png"],
        }
    ],
    [
        {
            "text": "Detailed inspection required: Check for concealed weapons, electronic devices with large batteries, and any suspicious dense materials.",
            "files": ["assets/additional-examples/beam2.png"],
        }
    ],
    [
        {
            "text": "Training mode: Identify and explain why each detected item is considered a security threat according to TSA/aviation security standards.",
            "files": ["assets/additional-examples/beam1.png"],
        }
    ],
    [
        {
            "text": "Border security check: Scan for contraband, weapons, and any items that violate international travel regulations.",
            "files": ["assets/additional-examples/beam2.png"],
        }
    ],
    [
        {
            "text": "Emergency protocol: Priority scan for immediate threats - explosives, firearms, and large bladed weapons only. Report findings urgently.",
            "files": ["assets/additional-examples/beam1.png"],
        }
    ],
]

##############################################################################
# Gradio UI (Blocks) 구성
##############################################################################
css = """
.gradio-container {
    background: white;
    padding: 30px 40px;
    margin: 20px auto;
    width: 100% !important;
    max-width: none !important;
}
.fillable {
    width: 100% !important; 
    max-width: 100% !important; 
}
body {
    background: white;
    margin: 0;
    padding: 0;
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    color: #333;
}
button, .btn {
    background: transparent !important;
    border: 1px solid #ddd;
    color: #333;
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    cursor: pointer;
}
button:hover, .btn:hover {
    background: rgba(0, 0, 0, 0.05) !important;
}

h1, h2, h3 {
    color: #333;
}

.multimodal-textbox, textarea, input {
    background: rgba(255, 255, 255, 0.5) !important;
    border: 1px solid #ddd;
    color: #333;
}

.chatbox, .chatbot, .message {
    background: transparent !important;
}

#examples_container, .examples-container {
    margin: auto;
    width: 90%;
    background: transparent !important;
}
"""

title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;">Gemma-3-R1984-4B-BEAM</h1>
"""


with gr.Blocks(css=css, title="Gemma-3-R1984-4B-BEAM - X-RAY Security Scanner") as demo:
    gr.Markdown(title_html)

    # Display the web search option (while the system prompt and token slider remain hidden)
    web_search_checkbox = gr.Checkbox(
        label="Deep Research",
        value=False
    )

    # X-RAY security scanning system prompt
    system_prompt_box = gr.Textbox(
        lines=3,
        value="""You are an advanced X-RAY security scanning AI specialized in threat detection and aviation security. Your primary mission is to identify ALL potential security threats in X-RAY images with extreme precision.

DETECTION PRIORITIES:
1. WEAPONS: Firearms (guns, pistols, rifles), knives, blades, sharp objects, martial arts weapons
2. EXPLOSIVES: Bombs, detonators, explosive materials, suspicious electronics, wires with batteries
3. PROHIBITED ITEMS: Scissors, large batteries, springs (potential weapon components), tools
4. LIQUIDS: Any container over 100ml (potential chemical threats)
5. EOD COMPONENTS: Any items that could be assembled into explosive devices

ANALYSIS PROTOCOL:
- Scan systematically from top-left to bottom-right
- Report location of threats using grid references (e.g., "upper-left quadrant")
- Classify threat severity: HIGH (immediate danger), MEDIUM (prohibited), LOW (requires inspection)
- Use professional security terminology
- Provide recommended actions for each threat

CRITICAL: Never miss a potential threat. When in doubt, flag for manual inspection.""",
        visible=False  # hidden from view
    )
    
    max_tokens_slider = gr.Slider(
        label="Max New Tokens",
        minimum=100,
        maximum=8000,
        step=50,
        value=1000,
        visible=False  # hidden from view
    )
    
    web_search_text = gr.Textbox(
        lines=1,
        label="Web Search Query",
        placeholder="",
        visible=False  # hidden from view
    )
    
    # Configure the chat interface
    chat = gr.ChatInterface(
        fn=run,
        type="messages",
        chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
        textbox=gr.MultimodalTextbox(
            file_types=[
                ".webp", ".png", ".jpg", ".jpeg", ".gif",
                ".mp4", ".csv", ".txt", ".pdf"
            ],
            file_count="multiple",
            autofocus=True
        ),
        multimodal=True,
        additional_inputs=[
            system_prompt_box,
            max_tokens_slider,
            web_search_checkbox,
            web_search_text,
        ],
        stop_btn=False,
        title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
        examples=examples,
        run_examples_on_click=False,
        cache_examples=False,
        css_paths=None,
        delete_cache=(1800, 1800),
    )

    # Example section - since examples are already set in ChatInterface, this is for display only
    with gr.Row(elem_id="examples_row"):
        with gr.Column(scale=12, elem_id="examples_container"):
            pass


if __name__ == "__main__":
    # Run locally
    demo.launch()