Spaces:
Running
Running
#!/usr/bin/env python | |
import os | |
import re | |
import tempfile | |
import gc # garbage collector | |
from collections.abc import Iterator | |
from threading import Thread | |
import json | |
import requests | |
import cv2 | |
import gradio as gr | |
import spaces | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
# CSV/TXT analysis | |
import pandas as pd | |
# PDF text extraction | |
import PyPDF2 | |
############################################################################## | |
# Memory cleanup function | |
############################################################################## | |
def clear_cuda_cache(): | |
"""Clear CUDA cache explicitly.""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
############################################################################## | |
# SERPHouse API key from environment variable | |
############################################################################## | |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") | |
############################################################################## | |
# Simple keyword extraction function | |
############################################################################## | |
def extract_keywords(text: str, top_k: int = 5) -> str: | |
""" | |
Extract keywords from text | |
""" | |
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text) | |
tokens = text.split() | |
key_tokens = tokens[:top_k] | |
return " ".join(key_tokens) | |
############################################################################## | |
# SerpHouse Live endpoint call | |
############################################################################## | |
def do_web_search(query: str) -> str: | |
""" | |
Return top 20 'organic' results as JSON string | |
""" | |
try: | |
url = "https://api.serphouse.com/serp/live" | |
# ๊ธฐ๋ณธ GET ๋ฐฉ์์ผ๋ก ํ๋ผ๋ฏธํฐ ๊ฐ์ํํ๊ณ ๊ฒฐ๊ณผ ์๋ฅผ 20๊ฐ๋ก ์ ํ | |
params = { | |
"q": query, | |
"domain": "google.com", | |
"serp_type": "web", # Basic web search | |
"device": "desktop", | |
"lang": "en", | |
"num": "20" # Request max 20 results | |
} | |
headers = { | |
"Authorization": f"Bearer {SERPHOUSE_API_KEY}" | |
} | |
logger.info(f"SerpHouse API call... query: {query}") | |
logger.info(f"Request URL: {url} - params: {params}") | |
# GET request | |
response = requests.get(url, headers=headers, params=params, timeout=60) | |
response.raise_for_status() | |
logger.info(f"SerpHouse API response status: {response.status_code}") | |
data = response.json() | |
# Handle various response structures | |
results = data.get("results", {}) | |
organic = None | |
# Possible response structure 1 | |
if isinstance(results, dict) and "organic" in results: | |
organic = results["organic"] | |
# Possible response structure 2 (nested results) | |
elif isinstance(results, dict) and "results" in results: | |
if isinstance(results["results"], dict) and "organic" in results["results"]: | |
organic = results["results"]["organic"] | |
# Possible response structure 3 (top-level organic) | |
elif "organic" in data: | |
organic = data["organic"] | |
if not organic: | |
logger.warning("No organic results found in response.") | |
logger.debug(f"Response structure: {list(data.keys())}") | |
if isinstance(results, dict): | |
logger.debug(f"results structure: {list(results.keys())}") | |
return "No web search results found or unexpected API response structure." | |
# Limit results and optimize context length | |
max_results = min(20, len(organic)) | |
limited_organic = organic[:max_results] | |
# Format results for better readability | |
summary_lines = [] | |
for idx, item in enumerate(limited_organic, start=1): | |
title = item.get("title", "No title") | |
link = item.get("link", "#") | |
snippet = item.get("snippet", "No description") | |
displayed_link = item.get("displayed_link", link) | |
# Markdown format | |
summary_lines.append( | |
f"### Result {idx}: {title}\n\n" | |
f"{snippet}\n\n" | |
f"**Source**: [{displayed_link}]({link})\n\n" | |
f"---\n" | |
) | |
# Add simple instructions for model | |
instructions = """ | |
# X-RAY Security Scanning Reference Results | |
Use this information to enhance your analysis. | |
""" | |
search_results = instructions + "\n".join(summary_lines) | |
logger.info(f"Processed {len(limited_organic)} search results") | |
return search_results | |
except Exception as e: | |
logger.error(f"Web search failed: {e}") | |
return f"Web search failed: {str(e)}" | |
############################################################################## | |
# Model/Processor loading | |
############################################################################## | |
MAX_CONTENT_CHARS = 2000 | |
MAX_INPUT_LENGTH = 2096 # Max input token limit | |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B") | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="eager" # Change to "flash_attention_2" if available | |
) | |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
############################################################################## | |
# CSV, TXT, PDF analysis functions | |
############################################################################## | |
def analyze_csv_file(path: str) -> str: | |
""" | |
Convert CSV file to string. Truncate if too long. | |
""" | |
try: | |
df = pd.read_csv(path) | |
if df.shape[0] > 50 or df.shape[1] > 10: | |
df = df.iloc[:50, :10] | |
df_str = df.to_string() | |
if len(df_str) > MAX_CONTENT_CHARS: | |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" | |
except Exception as e: | |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" | |
def analyze_txt_file(path: str) -> str: | |
""" | |
Read TXT file. Truncate if too long. | |
""" | |
try: | |
with open(path, "r", encoding="utf-8") as f: | |
text = f.read() | |
if len(text) > MAX_CONTENT_CHARS: | |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" | |
except Exception as e: | |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" | |
def pdf_to_markdown(pdf_path: str) -> str: | |
""" | |
Convert PDF text to Markdown. Extract text by pages. | |
""" | |
text_chunks = [] | |
try: | |
with open(pdf_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
max_pages = min(5, len(reader.pages)) | |
for page_num in range(max_pages): | |
page = reader.pages[page_num] | |
page_text = page.extract_text() or "" | |
page_text = page_text.strip() | |
if page_text: | |
if len(page_text) > MAX_CONTENT_CHARS // max_pages: | |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" | |
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") | |
if len(reader.pages) > max_pages: | |
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") | |
except Exception as e: | |
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" | |
full_text = "\n".join(text_chunks) | |
if len(full_text) > MAX_CONTENT_CHARS: | |
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" | |
############################################################################## | |
# Image/Video upload limit check | |
############################################################################## | |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for path in paths: | |
if path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for item in history: | |
if item["role"] != "user" or isinstance(item["content"], str): | |
continue | |
if isinstance(item["content"], list) and len(item["content"]) > 0: | |
file_path = item["content"][0] | |
if isinstance(file_path, str): | |
if file_path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
media_files = [] | |
for f in message["files"]: | |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): | |
media_files.append(f) | |
new_image_count, new_video_count = count_files_in_new_message(media_files) | |
history_image_count, history_video_count = count_files_in_history(history) | |
image_count = history_image_count + new_image_count | |
video_count = history_video_count + new_video_count | |
if video_count > 1: | |
gr.Warning("Only one video is supported.") | |
return False | |
if video_count == 1: | |
if image_count > 0: | |
gr.Warning("Mixing images and videos is not allowed.") | |
return False | |
if "<image>" in message["text"]: | |
gr.Warning("Using <image> tags with video files is not supported.") | |
return False | |
if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
return False | |
if "<image>" in message["text"]: | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_tag_count = message["text"].count("<image>") | |
if image_tag_count != len(image_files): | |
gr.Warning("The number of <image> tags in the text does not match the number of image files.") | |
return False | |
return True | |
############################################################################## | |
# Video processing - with temp file tracking | |
############################################################################## | |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(int(fps), int(total_frames / 10)) | |
frames = [] | |
for i in range(0, total_frames, frame_interval): | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Resize image | |
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
if len(frames) >= 5: | |
break | |
vidcap.release() | |
return frames | |
def process_video(video_path: str) -> tuple[list[dict], list[str]]: | |
content = [] | |
temp_files = [] # List for tracking temp files | |
frames = downsample_video(video_path) | |
for frame in frames: | |
pil_image, timestamp = frame | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
pil_image.save(temp_file.name) | |
temp_files.append(temp_file.name) # Track for deletion later | |
content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
return content, temp_files | |
############################################################################## | |
# interleaved <image> processing | |
############################################################################## | |
def process_interleaved_images(message: dict) -> list[dict]: | |
parts = re.split(r"(<image>)", message["text"]) | |
content = [] | |
image_index = 0 | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
for part in parts: | |
if part == "<image>" and image_index < len(image_files): | |
content.append({"type": "image", "url": image_files[image_index]}) | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
else: | |
if isinstance(part, str) and part != "<image>": | |
content.append({"type": "text", "text": part}) | |
return content | |
############################################################################## | |
# PDF + CSV + TXT + Image/Video | |
############################################################################## | |
def is_image_file(file_path: str) -> bool: | |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) | |
def is_video_file(file_path: str) -> bool: | |
return file_path.endswith(".mp4") | |
def is_document_file(file_path: str) -> bool: | |
return ( | |
file_path.lower().endswith(".pdf") | |
or file_path.lower().endswith(".csv") | |
or file_path.lower().endswith(".txt") | |
) | |
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]: | |
temp_files = [] # List for tracking temp files | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}], temp_files | |
video_files = [f for f in message["files"] if is_video_file(f)] | |
image_files = [f for f in message["files"] if is_image_file(f)] | |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] | |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] | |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] | |
content_list = [{"type": "text", "text": message["text"]}] | |
for csv_path in csv_files: | |
csv_analysis = analyze_csv_file(csv_path) | |
content_list.append({"type": "text", "text": csv_analysis}) | |
for txt_path in txt_files: | |
txt_analysis = analyze_txt_file(txt_path) | |
content_list.append({"type": "text", "text": txt_analysis}) | |
for pdf_path in pdf_files: | |
pdf_markdown = pdf_to_markdown(pdf_path) | |
content_list.append({"type": "text", "text": pdf_markdown}) | |
if video_files: | |
video_content, video_temp_files = process_video(video_files[0]) | |
content_list += video_content | |
temp_files.extend(video_temp_files) | |
return content_list, temp_files | |
if "<image>" in message["text"] and image_files: | |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) | |
if content_list and content_list[0]["type"] == "text": | |
content_list = content_list[1:] | |
return interleaved_content + content_list, temp_files | |
else: | |
for img_path in image_files: | |
content_list.append({"type": "image", "url": img_path}) | |
return content_list, temp_files | |
############################################################################## | |
# history -> LLM message conversion | |
############################################################################## | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content: list[dict] = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
elif isinstance(content, list) and len(content) > 0: | |
file_path = content[0] | |
if is_image_file(file_path): | |
current_user_content.append({"type": "image", "url": file_path}) | |
else: | |
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
return messages | |
############################################################################## | |
# Model generation function with OOM catch | |
############################################################################## | |
def _model_gen_with_oom_catch(**kwargs): | |
""" | |
Catch OutOfMemoryError in separate thread | |
""" | |
try: | |
model.generate(**kwargs) | |
except torch.cuda.OutOfMemoryError: | |
raise RuntimeError( | |
"[OutOfMemoryError] GPU memory insufficient. " | |
"Please reduce Max New Tokens or prompt length." | |
) | |
finally: | |
# Clear cache after generation | |
clear_cuda_cache() | |
############################################################################## | |
# Main inference function (with auto web search) | |
############################################################################## | |
def run( | |
message: dict, | |
history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 512, | |
use_web_search: bool = False, | |
web_search_query: str = "", | |
) -> Iterator[str]: | |
if not validate_media_constraints(message, history): | |
yield "" | |
return | |
temp_files = [] # For tracking temp files | |
try: | |
combined_system_msg = "" | |
# Used internally only (hidden from UI) | |
if system_prompt.strip(): | |
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n" | |
if use_web_search: | |
user_text = message["text"] | |
ws_query = extract_keywords(user_text, top_k=5) | |
if ws_query.strip(): | |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") | |
ws_result = do_web_search(ws_query) | |
combined_system_msg += f"[X-RAY Security Reference Data]\n{ws_result}\n\n" | |
else: | |
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n" | |
messages = [] | |
if combined_system_msg.strip(): | |
messages.append({ | |
"role": "system", | |
"content": [{"type": "text", "text": combined_system_msg.strip()}], | |
}) | |
messages.extend(process_history(history)) | |
user_content, user_temp_files = process_new_user_message(message) | |
temp_files.extend(user_temp_files) # Track temp files | |
for item in user_content: | |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: | |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
messages.append({"role": "user", "content": user_content}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
# Limit input token count | |
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH: | |
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:] | |
if 'attention_mask' in inputs: | |
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:] | |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) | |
t.start() | |
output = "" | |
for new_text in streamer: | |
output += new_text | |
yield output | |
except Exception as e: | |
logger.error(f"Error in run: {str(e)}") | |
yield f"Error occurred: {str(e)}" | |
finally: | |
# Delete temp files | |
for temp_file in temp_files: | |
try: | |
if os.path.exists(temp_file): | |
os.unlink(temp_file) | |
logger.info(f"Deleted temp file: {temp_file}") | |
except Exception as e: | |
logger.warning(f"Failed to delete temp file {temp_file}: {e}") | |
# Explicit memory cleanup | |
try: | |
del inputs, streamer | |
except: | |
pass | |
clear_cuda_cache() | |
############################################################################## | |
# Gradio UI (Blocks) ๊ตฌ์ฑ | |
############################################################################## | |
css = """ | |
/* Global Styles */ | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); | |
* { | |
box-sizing: border-box; | |
} | |
body { | |
margin: 0; | |
padding: 0; | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
min-height: 100vh; | |
color: #2d3748; | |
} | |
/* Container Styling */ | |
.gradio-container { | |
background: rgba(255, 255, 255, 0.95); | |
backdrop-filter: blur(20px); | |
border-radius: 24px; | |
padding: 40px; | |
margin: 30px auto; | |
width: 95% !important; | |
max-width: 1400px !important; | |
box-shadow: | |
0 25px 50px -12px rgba(0, 0, 0, 0.25), | |
0 0 0 1px rgba(255, 255, 255, 0.05); | |
border: 1px solid rgba(255, 255, 255, 0.2); | |
} | |
/* Header Styling */ | |
.header-container { | |
text-align: center; | |
margin-bottom: 2rem; | |
padding: 2rem 0; | |
background: linear-gradient(135deg, #f093fb 0%, #f5576c 50%, #4facfe 100%); | |
background-clip: text; | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
} | |
/* Button Styling */ | |
button, .btn { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
border: none !important; | |
color: white !important; | |
padding: 12px 28px !important; | |
border-radius: 12px !important; | |
font-weight: 600 !important; | |
font-size: 14px !important; | |
text-transform: none !important; | |
letter-spacing: 0.5px !important; | |
cursor: pointer !important; | |
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; | |
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important; | |
position: relative !important; | |
overflow: hidden !important; | |
} | |
button:hover, .btn:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6) !important; | |
background: linear-gradient(135deg, #764ba2 0%, #667eea 100%) !important; | |
} | |
button:active, .btn:active { | |
transform: translateY(0) !important; | |
} | |
/* Primary Action Button */ | |
button[variant="primary"], .primary-btn { | |
background: linear-gradient(135deg, #ff6b6b 0%, #ee5a52 100%) !important; | |
box-shadow: 0 4px 15px rgba(255, 107, 107, 0.4) !important; | |
} | |
button[variant="primary"]:hover, .primary-btn:hover { | |
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.6) !important; | |
} | |
/* Input Fields */ | |
.multimodal-textbox, textarea, input { | |
background: rgba(255, 255, 255, 0.8) !important; | |
backdrop-filter: blur(10px) !important; | |
border: 2px solid rgba(102, 126, 234, 0.2) !important; | |
border-radius: 16px !important; | |
color: #2d3748 !important; | |
font-family: 'Inter', sans-serif !important; | |
padding: 16px 20px !important; | |
transition: all 0.3s ease !important; | |
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1) !important; | |
} | |
.multimodal-textbox:focus, textarea:focus, input:focus { | |
border-color: #667eea !important; | |
box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1), 0 8px 30px rgba(0, 0, 0, 0.15) !important; | |
outline: none !important; | |
background: rgba(255, 255, 255, 0.95) !important; | |
} | |
/* Chat Interface */ | |
.chatbox, .chatbot { | |
background: rgba(255, 255, 255, 0.6) !important; | |
backdrop-filter: blur(15px) !important; | |
border-radius: 20px !important; | |
border: 1px solid rgba(255, 255, 255, 0.3) !important; | |
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important; | |
padding: 24px !important; | |
} | |
.message { | |
background: rgba(255, 255, 255, 0.9) !important; | |
border-radius: 16px !important; | |
padding: 16px 20px !important; | |
margin: 8px 0 !important; | |
border: 1px solid rgba(102, 126, 234, 0.1) !important; | |
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important; | |
transition: all 0.3s ease !important; | |
} | |
.message:hover { | |
transform: translateY(-1px) !important; | |
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.1) !important; | |
} | |
/* Assistant Message Styling */ | |
.message.assistant { | |
background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%) !important; | |
border-left: 4px solid #667eea !important; | |
} | |
/* User Message Styling */ | |
.message.user { | |
background: linear-gradient(135deg, rgba(255, 107, 107, 0.1) 0%, rgba(238, 90, 82, 0.1) 100%) !important; | |
border-left: 4px solid #ff6b6b !important; | |
} | |
/* Cards and Panels */ | |
.card, .panel { | |
background: rgba(255, 255, 255, 0.8) !important; | |
backdrop-filter: blur(15px) !important; | |
border-radius: 20px !important; | |
padding: 24px !important; | |
border: 1px solid rgba(255, 255, 255, 0.3) !important; | |
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important; | |
transition: all 0.3s ease !important; | |
} | |
.card:hover, .panel:hover { | |
transform: translateY(-4px) !important; | |
box-shadow: 0 16px 40px rgba(0, 0, 0, 0.15) !important; | |
} | |
/* Checkbox Styling */ | |
input[type="checkbox"] { | |
appearance: none !important; | |
width: 20px !important; | |
height: 20px !important; | |
border: 2px solid #667eea !important; | |
border-radius: 6px !important; | |
background: rgba(255, 255, 255, 0.8) !important; | |
cursor: pointer !important; | |
transition: all 0.3s ease !important; | |
position: relative !important; | |
} | |
input[type="checkbox"]:checked { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
border-color: #667eea !important; | |
} | |
input[type="checkbox"]:checked::after { | |
content: "โ" !important; | |
color: white !important; | |
font-size: 14px !important; | |
font-weight: bold !important; | |
position: absolute !important; | |
top: 50% !important; | |
left: 50% !important; | |
transform: translate(-50%, -50%) !important; | |
} | |
/* Progress Indicators */ | |
.progress { | |
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important; | |
border-radius: 10px !important; | |
height: 8px !important; | |
} | |
/* Tooltips */ | |
.tooltip { | |
background: rgba(45, 55, 72, 0.95) !important; | |
backdrop-filter: blur(10px) !important; | |
color: white !important; | |
border-radius: 8px !important; | |
padding: 8px 12px !important; | |
font-size: 12px !important; | |
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important; | |
} | |
/* Slider Styling */ | |
input[type="range"] { | |
appearance: none !important; | |
height: 8px !important; | |
border-radius: 4px !important; | |
background: linear-gradient(90deg, #e2e8f0 0%, #667eea 100%) !important; | |
outline: none !important; | |
} | |
input[type="range"]::-webkit-slider-thumb { | |
appearance: none !important; | |
width: 20px !important; | |
height: 20px !important; | |
border-radius: 50% !important; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
cursor: pointer !important; | |
box-shadow: 0 2px 8px rgba(102, 126, 234, 0.4) !important; | |
} | |
/* File Upload Area */ | |
.file-upload { | |
border: 2px dashed #667eea !important; | |
border-radius: 16px !important; | |
background: rgba(102, 126, 234, 0.05) !important; | |
padding: 40px !important; | |
text-align: center !important; | |
transition: all 0.3s ease !important; | |
} | |
.file-upload:hover { | |
border-color: #764ba2 !important; | |
background: rgba(102, 126, 234, 0.1) !important; | |
transform: scale(1.02) !important; | |
} | |
/* Animations */ | |
@keyframes fadeInUp { | |
from { | |
opacity: 0; | |
transform: translateY(30px); | |
} | |
to { | |
opacity: 1; | |
transform: translateY(0); | |
} | |
} | |
@keyframes slideIn { | |
from { | |
opacity: 0; | |
transform: translateX(-20px); | |
} | |
to { | |
opacity: 1; | |
transform: translateX(0); | |
} | |
} | |
.animate-fade-in { | |
animation: fadeInUp 0.6s ease-out !important; | |
} | |
.animate-slide-in { | |
animation: slideIn 0.4s ease-out !important; | |
} | |
/* Responsive Design */ | |
@media (max-width: 768px) { | |
.gradio-container { | |
margin: 15px !important; | |
padding: 24px !important; | |
width: calc(100% - 30px) !important; | |
} | |
button, .btn { | |
padding: 10px 20px !important; | |
font-size: 13px !important; | |
} | |
} | |
/* Dark Mode Support */ | |
@media (prefers-color-scheme: dark) { | |
.gradio-container { | |
background: rgba(26, 32, 44, 0.95) !important; | |
color: #e2e8f0 !important; | |
} | |
.message { | |
background: rgba(45, 55, 72, 0.8) !important; | |
color: #e2e8f0 !important; | |
} | |
} | |
/* Hide Footer - Safe and Specific Selectors */ | |
footer { | |
visibility: hidden !important; | |
display: none !important; | |
} | |
.footer { | |
visibility: hidden !important; | |
display: none !important; | |
} | |
/* Hide only Gradio attribution footer specifically */ | |
footer[class*="svelte"] { | |
visibility: hidden !important; | |
display: none !important; | |
} | |
/* Hide Gradio attribution links */ | |
a[href*="gradio.app"] { | |
visibility: hidden !important; | |
display: none !important; | |
} | |
/* More specific footer hiding for Gradio */ | |
.gradio-container footer, | |
.gradio-container .footer { | |
visibility: hidden !important; | |
display: none !important; | |
} | |
/* Custom Scrollbar */ | |
::-webkit-scrollbar { | |
width: 8px !important; | |
} | |
::-webkit-scrollbar-track { | |
background: rgba(226, 232, 240, 0.3) !important; | |
border-radius: 4px !important; | |
} | |
::-webkit-scrollbar-thumb { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
border-radius: 4px !important; | |
} | |
::-webkit-scrollbar-thumb:hover { | |
background: linear-gradient(135deg, #764ba2 0%, #667eea 100%) !important; | |
} | |
""" | |
title_html = """ | |
<div align="center" style="margin-bottom: 2em; padding: 2rem 0;" class="animate-fade-in"> | |
<div style=" | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%); | |
background-clip: text; | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
margin-bottom: 1rem; | |
"> | |
<h1 style=" | |
margin: 0; | |
font-size: 3.5em; | |
font-weight: 700; | |
letter-spacing: -0.02em; | |
text-shadow: 0 4px 20px rgba(102, 126, 234, 0.3); | |
"> | |
๐ค Robo Beam-Search | |
</h1> | |
</div> | |
<div style=" | |
background: rgba(255, 255, 255, 0.9); | |
backdrop-filter: blur(15px); | |
border-radius: 16px; | |
padding: 1.5rem 2rem; | |
margin: 1rem auto; | |
max-width: 700px; | |
border: 1px solid rgba(102, 126, 234, 0.2); | |
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1); | |
"> | |
<p style=" | |
margin: 0.5em 0; | |
font-size: 1.1em; | |
color: #4a5568; | |
font-weight: 500; | |
"> | |
<span style=" | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
background-clip: text; | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
font-weight: 600; | |
">Base LLM:</span> VIDraft/Gemma-3-R1984-4B | |
</p> | |
<p style=" | |
margin: 1em 0 0 0; | |
font-size: 1em; | |
color: #718096; | |
line-height: 1.6; | |
font-weight: 400; | |
"> | |
๋นํ๊ดด X-RAY ๊ฒ์ฌ/์กฐ์ฌ ์ด๋ฏธ์ง์ ๋ํ ์ํ ์์ ์๋ณ/๋ถ์ ๊ธฐ๋ฐ ๋ํํ ์จํ๋ ๋ฏธ์ค AI ํ๋ซํผ | |
</p> | |
</div> | |
<div style=" | |
display: flex; | |
justify-content: center; | |
gap: 1rem; | |
margin-top: 2rem; | |
flex-wrap: wrap; | |
"> | |
<div style=" | |
background: rgba(102, 126, 234, 0.1); | |
border: 1px solid rgba(102, 126, 234, 0.3); | |
border-radius: 12px; | |
padding: 0.5rem 1rem; | |
font-size: 0.9em; | |
color: #667eea; | |
font-weight: 500; | |
"> | |
๐ X-RAY ๋ถ์ | |
</div> | |
<div style=" | |
background: rgba(118, 75, 162, 0.1); | |
border: 1px solid rgba(118, 75, 162, 0.3); | |
border-radius: 12px; | |
padding: 0.5rem 1rem; | |
font-size: 0.9em; | |
color: #764ba2; | |
font-weight: 500; | |
"> | |
๐ก๏ธ ๋ณด์ ์ค์บ๋ | |
</div> | |
<div style=" | |
background: rgba(240, 147, 251, 0.1); | |
border: 1px solid rgba(240, 147, 251, 0.3); | |
border-radius: 12px; | |
padding: 0.5rem 1rem; | |
font-size: 0.9em; | |
color: #f093fb; | |
font-weight: 500; | |
"> | |
๐ ์น ๊ฒ์ | |
</div> | |
</div> | |
</div> | |
""" | |
title_html = """ | |
<div align="center" style="margin-bottom: 2em; padding: 2rem 0;" class="animate-fade-in"> | |
<div style=" | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%); | |
background-clip: text; | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
margin-bottom: 1rem; | |
"> | |
<h1 style=" | |
margin: 0; | |
font-size: 3.5em; | |
font-weight: 700; | |
letter-spacing: -0.02em; | |
text-shadow: 0 4px 20px rgba(102, 126, 234, 0.3); | |
"> | |
๐ค Robo Beam-Search | |
</h1> | |
</div> | |
<div style=" | |
background: rgba(255, 255, 255, 0.9); | |
backdrop-filter: blur(15px); | |
border-radius: 16px; | |
padding: 1.5rem 2rem; | |
margin: 1rem auto; | |
max-width: 700px; | |
border: 1px solid rgba(102, 126, 234, 0.2); | |
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1); | |
"> | |
<p style=" | |
margin: 0.5em 0; | |
font-size: 1.1em; | |
color: #4a5568; | |
font-weight: 500; | |
"> | |
<span style=" | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
background-clip: text; | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
font-weight: 600; | |
">Base LLM:</span> VIDraft/Gemma-3-R1984-4B | |
</p> | |
<p style=" | |
margin: 1em 0 0 0; | |
font-size: 1em; | |
color: #718096; | |
line-height: 1.6; | |
font-weight: 400; | |
"> | |
๋นํ๊ดด X-RAY ๊ฒ์ฌ/์กฐ์ฌ ์ด๋ฏธ์ง์ ๋ํ ์ํ ์์ ์๋ณ/๋ถ์ ๊ธฐ๋ฐ ๋ํํ ์จํ๋ ๋ฏธ์ค AI ํ๋ซํผ | |
</p> | |
</div> | |
<div style=" | |
display: flex; | |
justify-content: center; | |
gap: 1rem; | |
margin-top: 2rem; | |
flex-wrap: wrap; | |
"> | |
<div style=" | |
background: rgba(102, 126, 234, 0.1); | |
border: 1px solid rgba(102, 126, 234, 0.3); | |
border-radius: 12px; | |
padding: 0.5rem 1rem; | |
font-size: 0.9em; | |
color: #667eea; | |
font-weight: 500; | |
"> | |
๐ X-RAY ๋ถ์ | |
</div> | |
<div style=" | |
background: rgba(118, 75, 162, 0.1); | |
border: 1px solid rgba(118, 75, 162, 0.3); | |
border-radius: 12px; | |
padding: 0.5rem 1rem; | |
font-size: 0.9em; | |
color: #764ba2; | |
font-weight: 500; | |
"> | |
๐ก๏ธ ๋ณด์ ์ค์บ๋ | |
</div> | |
<div style=" | |
background: rgba(240, 147, 251, 0.1); | |
border: 1px solid rgba(240, 147, 251, 0.3); | |
border-radius: 12px; | |
padding: 0.5rem 1rem; | |
font-size: 0.9em; | |
color: #f093fb; | |
font-weight: 500; | |
"> | |
๐ ์น ๊ฒ์ | |
</div> | |
</div> | |
</div> | |
""" | |
title_html = """ | |
<div align="center" style="margin-bottom: 1em;"> | |
<h1 style="margin-bottom: 0.2em; font-size: 1.8em; color: #333;">๐ค Robo Beam-Search</h1> | |
<p style="margin: 0.5em 0; font-size: 0.9em; color: #888; max-width: 600px; margin-left: auto; margin-right: auto;"> | |
๋นํ๊ดด X-RAY ๊ฒ์ฌ/์กฐ์ฌ ์ด๋ฏธ์ง์ ๋ํ ์ํ ์์ ์๋ณ/๋ถ์ ๊ธฐ๋ฐ ๋ํํ ์จํ๋ ๋ฏธ์ค AI ํ๋ซํผ <strong>Base LLM:</strong> Gemma-3-R1984-4B / 12B/ 27B @Powered by VIDraft | |
</p> | |
</div> | |
""" | |
with gr.Blocks(css=css, title="Gemma-3-R1984-4B-BEAM - X-RAY Security Scanner") as demo: | |
gr.Markdown(title_html) | |
# Display the web search option (while the system prompt and token slider remain hidden) | |
web_search_checkbox = gr.Checkbox( | |
label="Deep Research", | |
value=False | |
) | |
# X-RAY security scanning system prompt | |
system_prompt_box = gr.Textbox( | |
lines=3, | |
value="""๋ฐ๋์ ํ๊ธ๋ก ๋ต๋ณํ๋ผ. ๋น์ ์ ์ํ ํ์ง์ ํญ๊ณต ๋ณด์์ ํนํ๋ ์ฒจ๋จ X-RAY ๋ณด์ ์ค์บ๋ AI์ ๋๋ค. ๋น์ ์ ์ฃผ ์๋ฌด๋ X-RAY ์ด๋ฏธ์ง์์ ๋ชจ๋ ์ ์ฌ์ ๋ณด์ ์ํ์ ์ต์์ ์ ํ๋๋ก ์๋ณํ๋ ๊ฒ์ ๋๋ค. | |
์ค์: ๋ณด๊ณ ์์ ๋ ์ง, ์๊ฐ, ๋๋ ํ์ฌ ์ผ์๋ฅผ ์ ๋ ํฌํจํ์ง ๋ง์ญ์์ค. | |
ํ์ง ์ฐ์ ์์: | |
1. **๋ฌด๊ธฐ**: ํ๊ธฐ(๊ถ์ด, ์์ด ๋ฑ), ์นผยท๋ ๋ถ์ดยท์๋ฆฌํ ๋ฌผ์ฒด, ํธ์ ์ฉยท๊ฒฉํฌ ๋ฌด๊ธฐ | |
2. **ํญ๋ฐ๋ฌผ**: ํญํ, ๊ธฐํญ์ฅ์น, ํญ๋ฐ์ฑ ๋ฌผ์ง, ์์ฌ์ค๋ฌ์ด ์ ์ ์ฅ์น, ๋ฐฐํฐ๋ฆฌ๊ฐ ์ฐ๊ฒฐ๋ ์ ์ | |
3. **๋ฐ์ ๊ธ์ง ๋ฌผํ**: ๊ฐ์, ๋์ฉ๋ ๋ฐฐํฐ๋ฆฌ, ์คํ๋ง(๋ฌด๊ธฐ ๋ถํ ๊ฐ๋ฅ), ๊ณต๊ตฌ๋ฅ | |
4. **์ก์ฒด**: 100 ml ์ด์ ์ฉ๊ธฐ์ ๋ด๊ธด ๋ชจ๋ ์ก์ฒด(ํํ ์ํ ๊ฐ๋ฅ) | |
5. **EOD ๊ตฌ์ฑํ**: ํญ๋ฐ๋ฌผ๋ก ์กฐ๋ฆฝ๋ ์ ์๋ ๋ชจ๋ ๋ถํ | |
๋ถ์ ํ๋กํ ์ฝ: | |
- ์ข์๋จ์์ ์ฐํ๋จ์ผ๋ก ์ฒด๊ณ์ ์ผ๋ก ์ค์บ | |
- ์ํ ์์น๋ฅผ ๊ฒฉ์ ๊ธฐ์ค์ผ๋ก ๋ณด๊ณ (์: โ์ข์๋จ ์ฌ๋ถ๋ฉดโ) | |
- ์ํ ์ฌ๊ฐ๋ ๋ถ๋ฅ | |
- **HIGH** : ์ฆ๊ฐ์ ์ํ | |
- **MEDIUM** : ๋ฐ์ ๊ธ์ง | |
- **LOW** : ์ถ๊ฐ ๊ฒ์ฌ ํ์ | |
- ์ ๋ฌธ ๋ณด์ ์ฉ์ด ์ฌ์ฉ | |
- ๊ฐ ์ํ ํญ๋ชฉ๋ณ ๊ถ์ฅ ์กฐ์น ์ ์ | |
- ๋ณด๊ณ ์์๋ ๋ถ์ ๊ฒฐ๊ณผ๋ง ํฌํจํ๊ณ ๋ ์ง/์๊ฐ ์ ๋ณด๋ ํฌํจํ์ง ์์ | |
โ ๏ธ ์ค๋ํ ์ฌํญ: ์ ์ฌ์ ์ํ์ ์ ๋ ๋์น์ง ๋ง์ญ์์ค. ์์ฌ์ค๋ฌ์ธ ๊ฒฝ์ฐ ๋ฐ๋์ ์๋ ๊ฒ์ฌ๋ฅผ ์์ฒญํ์ญ์์ค.""", | |
visible=False # hidden from view | |
) | |
max_tokens_slider = gr.Slider( | |
label="Max New Tokens", | |
minimum=100, | |
maximum=8000, | |
step=50, | |
value=1000, | |
visible=False # hidden from view | |
) | |
web_search_text = gr.Textbox( | |
lines=1, | |
label="Web Search Query", | |
placeholder="", | |
visible=False # hidden from view | |
) | |
# Configure the chat interface | |
chat = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox( | |
file_types=[ | |
".webp", ".png", ".jpg", ".jpeg", ".gif", | |
".mp4", ".csv", ".txt", ".pdf" | |
], | |
file_count="multiple", | |
autofocus=True | |
), | |
multimodal=True, | |
additional_inputs=[ | |
system_prompt_box, | |
max_tokens_slider, | |
web_search_checkbox, | |
web_search_text, | |
], | |
stop_btn=False, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths=None, | |
delete_cache=(1800, 1800), | |
) | |
if __name__ == "__main__": | |
# Run locally | |
demo.launch() |