|
|
|
|
|
import os |
|
import re |
|
import tempfile |
|
import gc |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
import json |
|
import requests |
|
import cv2 |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from loguru import logger |
|
from PIL import Image |
|
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer |
|
|
|
|
|
import pandas as pd |
|
|
|
import PyPDF2 |
|
|
|
|
|
|
|
|
|
def clear_cuda_cache(): |
|
"""CUDA ์บ์๋ฅผ ๋ช
์์ ์ผ๋ก ๋น์๋๋ค.""" |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
|
|
|
|
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") |
|
|
|
|
|
|
|
|
|
def extract_keywords(text: str, top_k: int = 5) -> str: |
|
""" |
|
1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น |
|
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ |
|
3) ์ต๋ top_k๊ฐ๋ง |
|
""" |
|
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text) |
|
tokens = text.split() |
|
key_tokens = tokens[:top_k] |
|
return " ".join(key_tokens) |
|
|
|
|
|
|
|
|
|
|
|
def do_web_search(query: str) -> str: |
|
""" |
|
์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ |
|
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ |
|
""" |
|
try: |
|
url = "https://api.serphouse.com/serp/live" |
|
|
|
|
|
params = { |
|
"q": query, |
|
"domain": "google.com", |
|
"serp_type": "web", |
|
"device": "desktop", |
|
"lang": "en", |
|
"num": "20" |
|
} |
|
|
|
headers = { |
|
"Authorization": f"Bearer {SERPHOUSE_API_KEY}" |
|
} |
|
|
|
logger.info(f"SerpHouse API ํธ์ถ ์ค... ๊ฒ์์ด: {query}") |
|
logger.info(f"์์ฒญ URL: {url} - ํ๋ผ๋ฏธํฐ: {params}") |
|
|
|
|
|
response = requests.get(url, headers=headers, params=params, timeout=60) |
|
response.raise_for_status() |
|
|
|
logger.info(f"SerpHouse API ์๋ต ์ํ ์ฝ๋: {response.status_code}") |
|
data = response.json() |
|
|
|
|
|
results = data.get("results", {}) |
|
organic = None |
|
|
|
|
|
if isinstance(results, dict) and "organic" in results: |
|
organic = results["organic"] |
|
|
|
|
|
elif isinstance(results, dict) and "results" in results: |
|
if isinstance(results["results"], dict) and "organic" in results["results"]: |
|
organic = results["results"]["organic"] |
|
|
|
|
|
elif "organic" in data: |
|
organic = data["organic"] |
|
|
|
if not organic: |
|
logger.warning("์๋ต์์ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.") |
|
logger.debug(f"์๋ต ๊ตฌ์กฐ: {list(data.keys())}") |
|
if isinstance(results, dict): |
|
logger.debug(f"results ๊ตฌ์กฐ: {list(results.keys())}") |
|
return "No web search results found or unexpected API response structure." |
|
|
|
|
|
max_results = min(20, len(organic)) |
|
limited_organic = organic[:max_results] |
|
|
|
|
|
summary_lines = [] |
|
for idx, item in enumerate(limited_organic, start=1): |
|
title = item.get("title", "No title") |
|
link = item.get("link", "#") |
|
snippet = item.get("snippet", "No description") |
|
displayed_link = item.get("displayed_link", link) |
|
|
|
|
|
summary_lines.append( |
|
f"### Result {idx}: {title}\n\n" |
|
f"{snippet}\n\n" |
|
f"**์ถ์ฒ**: [{displayed_link}]({link})\n\n" |
|
f"---\n" |
|
) |
|
|
|
|
|
instructions = """ |
|
# ์น ๊ฒ์ ๊ฒฐ๊ณผ |
|
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์
๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์: |
|
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์ |
|
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช
์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "X ์ถ์ฒ์ ๋ฐ๋ฅด๋ฉด...") |
|
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์ |
|
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์ |
|
""" |
|
|
|
search_results = instructions + "\n".join(summary_lines) |
|
logger.info(f"๊ฒ์ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐ ์ฒ๋ฆฌ ์๋ฃ") |
|
return search_results |
|
|
|
except Exception as e: |
|
logger.error(f"Web search failed: {e}") |
|
return f"Web search failed: {str(e)}" |
|
|
|
|
|
|
|
|
|
|
|
MAX_CONTENT_CHARS = 2000 |
|
MAX_INPUT_LENGTH = 2096 |
|
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-12B") |
|
|
|
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") |
|
model = Gemma3ForConditionalGeneration.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="eager" |
|
) |
|
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) |
|
|
|
|
|
|
|
|
|
|
|
def analyze_csv_file(path: str) -> str: |
|
""" |
|
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์. |
|
""" |
|
try: |
|
df = pd.read_csv(path) |
|
if df.shape[0] > 50 or df.shape[1] > 10: |
|
df = df.iloc[:50, :10] |
|
df_str = df.to_string() |
|
if len(df_str) > MAX_CONTENT_CHARS: |
|
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" |
|
except Exception as e: |
|
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" |
|
|
|
|
|
def analyze_txt_file(path: str) -> str: |
|
""" |
|
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์. |
|
""" |
|
try: |
|
with open(path, "r", encoding="utf-8") as f: |
|
text = f.read() |
|
if len(text) > MAX_CONTENT_CHARS: |
|
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" |
|
except Exception as e: |
|
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" |
|
|
|
|
|
def pdf_to_markdown(pdf_path: str) -> str: |
|
""" |
|
PDF ํ
์คํธ๋ฅผ Markdown์ผ๋ก ๋ณํ. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ. |
|
""" |
|
text_chunks = [] |
|
try: |
|
with open(pdf_path, "rb") as f: |
|
reader = PyPDF2.PdfReader(f) |
|
max_pages = min(5, len(reader.pages)) |
|
for page_num in range(max_pages): |
|
page = reader.pages[page_num] |
|
page_text = page.extract_text() or "" |
|
page_text = page_text.strip() |
|
if page_text: |
|
if len(page_text) > MAX_CONTENT_CHARS // max_pages: |
|
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" |
|
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") |
|
if len(reader.pages) > max_pages: |
|
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") |
|
except Exception as e: |
|
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" |
|
|
|
full_text = "\n".join(text_chunks) |
|
if len(full_text) > MAX_CONTENT_CHARS: |
|
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
|
|
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" |
|
|
|
|
|
|
|
|
|
|
|
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for path in paths: |
|
if path.endswith(".mp4"): |
|
video_count += 1 |
|
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
|
|
def count_files_in_history(history: list[dict]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for item in history: |
|
if item["role"] != "user" or isinstance(item["content"], str): |
|
continue |
|
if isinstance(item["content"], list) and len(item["content"]) > 0: |
|
file_path = item["content"][0] |
|
if isinstance(file_path, str): |
|
if file_path.endswith(".mp4"): |
|
video_count += 1 |
|
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
|
|
def validate_media_constraints(message: dict, history: list[dict]) -> bool: |
|
media_files = [] |
|
for f in message["files"]: |
|
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): |
|
media_files.append(f) |
|
|
|
new_image_count, new_video_count = count_files_in_new_message(media_files) |
|
history_image_count, history_video_count = count_files_in_history(history) |
|
image_count = history_image_count + new_image_count |
|
video_count = history_video_count + new_video_count |
|
|
|
if video_count > 1: |
|
gr.Warning("Only one video is supported.") |
|
return False |
|
if video_count == 1: |
|
if image_count > 0: |
|
gr.Warning("Mixing images and videos is not allowed.") |
|
return False |
|
if "<image>" in message["text"]: |
|
gr.Warning("Using <image> tags with video files is not supported.") |
|
return False |
|
if video_count == 0 and image_count > MAX_NUM_IMAGES: |
|
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") |
|
return False |
|
|
|
if "<image>" in message["text"]: |
|
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] |
|
image_tag_count = message["text"].count("<image>") |
|
if image_tag_count != len(image_files): |
|
gr.Warning("The number of <image> tags in the text does not match the number of image files.") |
|
return False |
|
|
|
return True |
|
|
|
|
|
|
|
|
|
|
|
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: |
|
vidcap = cv2.VideoCapture(video_path) |
|
fps = vidcap.get(cv2.CAP_PROP_FPS) |
|
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
frame_interval = max(int(fps), int(total_frames / 10)) |
|
frames = [] |
|
|
|
for i in range(0, total_frames, frame_interval): |
|
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) |
|
success, image = vidcap.read() |
|
if success: |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) |
|
pil_image = Image.fromarray(image) |
|
timestamp = round(i / fps, 2) |
|
frames.append((pil_image, timestamp)) |
|
if len(frames) >= 5: |
|
break |
|
|
|
vidcap.release() |
|
return frames |
|
|
|
|
|
def process_video(video_path: str) -> tuple[list[dict], list[str]]: |
|
content = [] |
|
temp_files = [] |
|
|
|
frames = downsample_video(video_path) |
|
for frame in frames: |
|
pil_image, timestamp = frame |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: |
|
pil_image.save(temp_file.name) |
|
temp_files.append(temp_file.name) |
|
content.append({"type": "text", "text": f"Frame {timestamp}:"}) |
|
content.append({"type": "image", "url": temp_file.name}) |
|
|
|
return content, temp_files |
|
|
|
|
|
|
|
|
|
|
|
def process_interleaved_images(message: dict) -> list[dict]: |
|
parts = re.split(r"(<image>)", message["text"]) |
|
content = [] |
|
image_index = 0 |
|
|
|
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] |
|
|
|
for part in parts: |
|
if part == "<image>" and image_index < len(image_files): |
|
content.append({"type": "image", "url": image_files[image_index]}) |
|
image_index += 1 |
|
elif part.strip(): |
|
content.append({"type": "text", "text": part.strip()}) |
|
else: |
|
if isinstance(part, str) and part != "<image>": |
|
content.append({"type": "text", "text": part}) |
|
return content |
|
|
|
|
|
|
|
|
|
|
|
def is_image_file(file_path: str) -> bool: |
|
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) |
|
|
|
def is_video_file(file_path: str) -> bool: |
|
return file_path.endswith(".mp4") |
|
|
|
def is_document_file(file_path: str) -> bool: |
|
return ( |
|
file_path.lower().endswith(".pdf") |
|
or file_path.lower().endswith(".csv") |
|
or file_path.lower().endswith(".txt") |
|
) |
|
|
|
|
|
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]: |
|
temp_files = [] |
|
|
|
if not message["files"]: |
|
return [{"type": "text", "text": message["text"]}], temp_files |
|
|
|
video_files = [f for f in message["files"] if is_video_file(f)] |
|
image_files = [f for f in message["files"] if is_image_file(f)] |
|
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] |
|
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] |
|
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] |
|
|
|
content_list = [{"type": "text", "text": message["text"]}] |
|
|
|
for csv_path in csv_files: |
|
csv_analysis = analyze_csv_file(csv_path) |
|
content_list.append({"type": "text", "text": csv_analysis}) |
|
|
|
for txt_path in txt_files: |
|
txt_analysis = analyze_txt_file(txt_path) |
|
content_list.append({"type": "text", "text": txt_analysis}) |
|
|
|
for pdf_path in pdf_files: |
|
pdf_markdown = pdf_to_markdown(pdf_path) |
|
content_list.append({"type": "text", "text": pdf_markdown}) |
|
|
|
if video_files: |
|
video_content, video_temp_files = process_video(video_files[0]) |
|
content_list += video_content |
|
temp_files.extend(video_temp_files) |
|
return content_list, temp_files |
|
|
|
if "<image>" in message["text"] and image_files: |
|
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) |
|
if content_list and content_list[0]["type"] == "text": |
|
content_list = content_list[1:] |
|
return interleaved_content + content_list, temp_files |
|
else: |
|
for img_path in image_files: |
|
content_list.append({"type": "image", "url": img_path}) |
|
|
|
return content_list, temp_files |
|
|
|
|
|
|
|
|
|
|
|
def process_history(history: list[dict]) -> list[dict]: |
|
messages = [] |
|
current_user_content: list[dict] = [] |
|
for item in history: |
|
if item["role"] == "assistant": |
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
current_user_content = [] |
|
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) |
|
else: |
|
content = item["content"] |
|
if isinstance(content, str): |
|
current_user_content.append({"type": "text", "text": content}) |
|
elif isinstance(content, list) and len(content) > 0: |
|
file_path = content[0] |
|
if is_image_file(file_path): |
|
current_user_content.append({"type": "image", "url": file_path}) |
|
else: |
|
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) |
|
|
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
|
|
return messages |
|
|
|
|
|
|
|
|
|
|
|
def _model_gen_with_oom_catch(**kwargs): |
|
""" |
|
๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด |
|
""" |
|
try: |
|
model.generate(**kwargs) |
|
except torch.cuda.OutOfMemoryError: |
|
raise RuntimeError( |
|
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. " |
|
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์." |
|
) |
|
finally: |
|
|
|
clear_cuda_cache() |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def run( |
|
message: dict, |
|
history: list[dict], |
|
system_prompt: str = "", |
|
max_new_tokens: int = 512, |
|
use_web_search: bool = False, |
|
web_search_query: str = "", |
|
) -> Iterator[str]: |
|
|
|
if not validate_media_constraints(message, history): |
|
yield "" |
|
return |
|
|
|
temp_files = [] |
|
|
|
try: |
|
combined_system_msg = "" |
|
|
|
|
|
if system_prompt.strip(): |
|
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n" |
|
|
|
if use_web_search: |
|
user_text = message["text"] |
|
ws_query = extract_keywords(user_text, top_k=5) |
|
if ws_query.strip(): |
|
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") |
|
ws_result = do_web_search(ws_query) |
|
combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n" |
|
|
|
combined_system_msg += "[์ฐธ๊ณ : ์ ๊ฒ์๊ฒฐ๊ณผ ๋ด์ฉ๊ณผ link๋ฅผ ์ถ์ฒ๋ก ์ธ์ฉํ์ฌ ๋ต๋ณํด ์ฃผ์ธ์.]\n\n" |
|
combined_system_msg += """ |
|
[์ค์ ์ง์์ฌํญ] |
|
1. ๋ต๋ณ์ ๊ฒ์ ๊ฒฐ๊ณผ์์ ์ฐพ์ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ฐ๋์ ์ธ์ฉํ์ธ์. |
|
2. ์ถ์ฒ ์ธ์ฉ ์ "[์ถ์ฒ ์ ๋ชฉ](๋งํฌ)" ํ์์ ๋งํฌ๋ค์ด ๋งํฌ๋ฅผ ์ฌ์ฉํ์ธ์. |
|
3. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์. |
|
4. ๋ต๋ณ ๋ง์ง๋ง์ "์ฐธ๊ณ ์๋ฃ:" ์น์
์ ์ถ๊ฐํ๊ณ ์ฌ์ฉํ ์ฃผ์ ์ถ์ฒ ๋งํฌ๋ฅผ ๋์ดํ์ธ์. |
|
""" |
|
else: |
|
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n" |
|
|
|
messages = [] |
|
if combined_system_msg.strip(): |
|
messages.append({ |
|
"role": "system", |
|
"content": [{"type": "text", "text": combined_system_msg.strip()}], |
|
}) |
|
|
|
messages.extend(process_history(history)) |
|
|
|
user_content, user_temp_files = process_new_user_message(message) |
|
temp_files.extend(user_temp_files) |
|
|
|
for item in user_content: |
|
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: |
|
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
messages.append({"role": "user", "content": user_content}) |
|
|
|
inputs = processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt", |
|
).to(device=model.device, dtype=torch.bfloat16) |
|
|
|
|
|
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH: |
|
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:] |
|
if 'attention_mask' in inputs: |
|
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:] |
|
|
|
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) |
|
gen_kwargs = dict( |
|
inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
|
|
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) |
|
t.start() |
|
|
|
output = "" |
|
for new_text in streamer: |
|
output += new_text |
|
yield output |
|
|
|
except Exception as e: |
|
logger.error(f"Error in run: {str(e)}") |
|
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" |
|
|
|
finally: |
|
|
|
for temp_file in temp_files: |
|
try: |
|
if os.path.exists(temp_file): |
|
os.unlink(temp_file) |
|
logger.info(f"Deleted temp file: {temp_file}") |
|
except Exception as e: |
|
logger.warning(f"Failed to delete temp file {temp_file}: {e}") |
|
|
|
|
|
try: |
|
del inputs, streamer |
|
except: |
|
pass |
|
|
|
clear_cuda_cache() |
|
|
|
|
|
|
|
|
|
|
|
|
|
examples = [ |
|
[ |
|
{ |
|
"text": "Compare the contents of the two PDF files.", |
|
"files": [ |
|
"assets/additional-examples/before.pdf", |
|
"assets/additional-examples/after.pdf", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Summarize and analyze the contents of the CSV file.", |
|
"files": ["assets/additional-examples/sample-csv.csv"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Assume the role of a friendly and understanding girlfriend. Describe this video.", |
|
"files": ["assets/additional-examples/tmp.mp4"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Describe the cover and read the text on it.", |
|
"files": ["assets/additional-examples/maz.jpg"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?", |
|
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Solve this integral.", |
|
"files": ["assets/additional-examples/4.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "When was this ticket issued, and what is its price?", |
|
"files": ["assets/additional-examples/2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Based on the sequence of these images, create a short story.", |
|
"files": [ |
|
"assets/sample-images/09-1.png", |
|
"assets/sample-images/09-2.png", |
|
"assets/sample-images/09-3.png", |
|
"assets/sample-images/09-4.png", |
|
"assets/sample-images/09-5.png", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Write Python code using matplotlib to plot a bar chart that matches this image.", |
|
"files": ["assets/additional-examples/barchart.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Read the text in the image and write it out in Markdown format.", |
|
"files": ["assets/additional-examples/3.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "What does this sign say?", |
|
"files": ["assets/sample-images/02.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Compare the two images and describe their similarities and differences.", |
|
"files": ["assets/sample-images/03.png"], |
|
} |
|
], |
|
] |
|
|
|
|
|
|
|
|
|
css = """ |
|
/* 1) UI๋ฅผ ์ฒ์๋ถํฐ ๊ฐ์ฅ ๋๊ฒ (width 100%) ๊ณ ์ ํ์ฌ ํ์ */ |
|
.gradio-container { |
|
background: rgba(255, 255, 255, 0.7); /* ๋ฐฐ๊ฒฝ ํฌ๋ช
๋ ์ฆ๊ฐ */ |
|
padding: 30px 40px; |
|
margin: 20px auto; /* ์์๋ ์ฌ๋ฐฑ๋ง ์ ์ง */ |
|
width: 100% !important; |
|
max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */ |
|
} |
|
.fillable { |
|
width: 100% !important; |
|
max-width: 100% !important; |
|
} |
|
/* 2) ๋ฐฐ๊ฒฝ์ ์์ ํ ํฌ๋ช
ํ๊ฒ ๋ณ๊ฒฝ */ |
|
body { |
|
background: transparent; /* ์์ ํฌ๋ช
๋ฐฐ๊ฒฝ */ |
|
margin: 0; |
|
padding: 0; |
|
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; |
|
color: #333; |
|
} |
|
/* ๋ฒํผ ์์ ์์ ํ ์ ๊ฑฐํ๊ณ ํฌ๋ช
ํ๊ฒ */ |
|
button, .btn { |
|
background: transparent !important; /* ์์ ์์ ํ ์ ๊ฑฐ */ |
|
border: 1px solid #ddd; /* ๊ฒฝ๊ณ์ ๋ง ์ด์ง ์ถ๊ฐ */ |
|
color: #333; |
|
padding: 12px 24px; |
|
text-transform: uppercase; |
|
font-weight: bold; |
|
letter-spacing: 1px; |
|
cursor: pointer; |
|
} |
|
button:hover, .btn:hover { |
|
background: rgba(0, 0, 0, 0.05) !important; /* ํธ๋ฒ ์ ์์ฃผ ์ด์ง ์ด๋ก๊ฒ๋ง */ |
|
} |
|
|
|
/* examples ๊ด๋ จ ๋ชจ๋ ์์ ์ ๊ฑฐ */ |
|
#examples_container, .examples-container { |
|
margin: auto; |
|
width: 90%; |
|
background: transparent !important; |
|
} |
|
#examples_row, .examples-row { |
|
justify-content: center; |
|
background: transparent !important; |
|
} |
|
|
|
/* examples ๋ฒํผ ๋ด๋ถ์ ๋ชจ๋ ์์ ์ ๊ฑฐ */ |
|
.gr-samples-table button, |
|
.gr-samples-table .gr-button, |
|
.gr-samples-table .gr-sample-btn, |
|
.gr-examples button, |
|
.gr-examples .gr-button, |
|
.gr-examples .gr-sample-btn, |
|
.examples button, |
|
.examples .gr-button, |
|
.examples .gr-sample-btn { |
|
background: transparent !important; |
|
border: 1px solid #ddd; |
|
color: #333; |
|
} |
|
|
|
/* examples ๋ฒํผ ํธ๋ฒ ์์๋ ์์ ์๊ฒ */ |
|
.gr-samples-table button:hover, |
|
.gr-samples-table .gr-button:hover, |
|
.gr-samples-table .gr-sample-btn:hover, |
|
.gr-examples button:hover, |
|
.gr-examples .gr-button:hover, |
|
.gr-examples .gr-sample-btn:hover, |
|
.examples button:hover, |
|
.examples .gr-button:hover, |
|
.examples .gr-sample-btn:hover { |
|
background: rgba(0, 0, 0, 0.05) !important; |
|
} |
|
|
|
/* ์ฑํ
์ธํฐํ์ด์ค ์์๋ค๋ ํฌ๋ช
ํ๊ฒ */ |
|
.chatbox, .chatbot, .message { |
|
background: transparent !important; |
|
} |
|
|
|
/* ์
๋ ฅ์ฐฝ ํฌ๋ช
๋ ์กฐ์ */ |
|
.multimodal-textbox, textarea, input { |
|
background: rgba(255, 255, 255, 0.5) !important; |
|
} |
|
|
|
/* ๋ชจ๋ ์ปจํ
์ด๋ ์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */ |
|
.container, .wrap, .box, .panel, .gr-panel { |
|
background: transparent !important; |
|
} |
|
|
|
/* ์์ ์น์
์ ๋ชจ๋ ์์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */ |
|
.gr-examples-container, .gr-examples, .gr-sample, .gr-sample-row, .gr-sample-cell { |
|
background: transparent !important; |
|
} |
|
""" |
|
|
|
title_html = """ |
|
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-R1984-27B </h1> |
|
<p align="center" style="font-size:1.1em; color:#555;"> |
|
โ
Agentic AI Platform โ
Reasoning & Uncensored โ
Multimodal & VLM โ
Deep-Research & RAG <br> |
|
Operates on an โ
'NVIDIA A100 GPU' as an independent local server, enhancing security and preventing information leakage.<br> |
|
@Model Rpository: VIDraft/Gemma-3-R1984-27B, @Based by 'Google Gemma-3-27b', @Powered by 'MOUSE-II'(VIDRAFT) |
|
</p> |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css, title="Gemma3-R1984-27B") as demo: |
|
gr.Markdown(title_html) |
|
|
|
|
|
web_search_checkbox = gr.Checkbox( |
|
label="Deep Research", |
|
value=False |
|
) |
|
|
|
|
|
system_prompt_box = gr.Textbox( |
|
lines=3, |
|
value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.", |
|
visible=False |
|
) |
|
|
|
max_tokens_slider = gr.Slider( |
|
label="Max New Tokens", |
|
minimum=100, |
|
maximum=8000, |
|
step=50, |
|
value=1000, |
|
visible=False |
|
) |
|
|
|
web_search_text = gr.Textbox( |
|
lines=1, |
|
label="(Unused) Web Search Query", |
|
placeholder="No direct input needed", |
|
visible=False |
|
) |
|
|
|
|
|
chat = gr.ChatInterface( |
|
fn=run, |
|
type="messages", |
|
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), |
|
textbox=gr.MultimodalTextbox( |
|
file_types=[ |
|
".webp", ".png", ".jpg", ".jpeg", ".gif", |
|
".mp4", ".csv", ".txt", ".pdf" |
|
], |
|
file_count="multiple", |
|
autofocus=True |
|
), |
|
multimodal=True, |
|
additional_inputs=[ |
|
system_prompt_box, |
|
max_tokens_slider, |
|
web_search_checkbox, |
|
web_search_text, |
|
], |
|
stop_btn=False, |
|
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>', |
|
examples=examples, |
|
run_examples_on_click=False, |
|
cache_examples=False, |
|
css_paths=None, |
|
delete_cache=(1800, 1800), |
|
) |
|
|
|
|
|
with gr.Row(elem_id="examples_row"): |
|
with gr.Column(scale=12, elem_id="examples_container"): |
|
gr.Markdown("### Example Inputs (click to load)") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
demo.launch() |
|
|