|
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
def hunyuan_token_reorder_to_token_major(tensor, fix_len, reorder_len, reorder_num_frame, frame_size):
|
|
"""Reorder it from frame major to token major!"""
|
|
assert reorder_len == reorder_num_frame * frame_size
|
|
assert tensor.shape[2] == fix_len + reorder_len
|
|
|
|
tensor[:, :, :-fix_len, :] = tensor[:, :, :-fix_len:, :].reshape(tensor.shape[0], tensor.shape[1], reorder_num_frame, frame_size, tensor.shape[3]) \
|
|
.transpose(2, 3).reshape(tensor.shape[0], tensor.shape[1], reorder_len, tensor.shape[3])
|
|
return tensor
|
|
|
|
def hunyuan_token_reorder_to_frame_major(tensor, fix_len, reorder_len, reorder_num_frame, frame_size):
|
|
"""Reorder it from token major to frame major!"""
|
|
assert reorder_len == reorder_num_frame * frame_size
|
|
assert tensor.shape[2] == fix_len + reorder_len
|
|
|
|
tensor[:, :, :-fix_len:, :] = tensor[:, :, :-fix_len:, :].reshape(tensor.shape[0], tensor.shape[1], frame_size, reorder_num_frame, tensor.shape[3]) \
|
|
.transpose(2, 3).reshape(tensor.shape[0], tensor.shape[1], reorder_len, tensor.shape[3])
|
|
return tensor
|
|
|
|
|
|
@triton.jit
|
|
def hunyuan_sparse_head_placement_kernel(
|
|
query_ptr, key_ptr, value_ptr,
|
|
query_out_ptr, key_out_ptr, value_out_ptr,
|
|
best_mask_idx_ptr,
|
|
query_stride_b, query_stride_h, query_stride_s, query_stride_d,
|
|
mask_idx_stride_b, mask_idx_stride_h,
|
|
seq_len: tl.constexpr,
|
|
head_dim: tl.constexpr,
|
|
context_length: tl.constexpr,
|
|
num_frame: tl.constexpr,
|
|
frame_size: tl.constexpr,
|
|
BLOCK_SIZE: tl.constexpr
|
|
):
|
|
|
|
|
|
cfg = tl.program_id(0)
|
|
head = tl.program_id(1)
|
|
block_id = tl.program_id(2)
|
|
|
|
start_id = block_id * BLOCK_SIZE
|
|
end_id = start_id + BLOCK_SIZE
|
|
end_id = tl.where(end_id > seq_len, seq_len, end_id)
|
|
|
|
|
|
is_temporal = tl.load(best_mask_idx_ptr + cfg * mask_idx_stride_b + head * mask_idx_stride_h)
|
|
|
|
offset_token = tl.arange(0, BLOCK_SIZE) + start_id
|
|
offset_mask = offset_token < seq_len
|
|
offset_d = tl.arange(0, head_dim)
|
|
|
|
if is_temporal:
|
|
frame_id = offset_token // frame_size
|
|
patch_id = offset_token - frame_id * frame_size
|
|
offset_store_token = tl.where(offset_token >= seq_len - context_length, offset_token, patch_id * num_frame + frame_id)
|
|
|
|
offset_load = (cfg * query_stride_b + head * query_stride_h + offset_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d
|
|
offset_query = query_ptr + offset_load
|
|
offset_key = key_ptr + offset_load
|
|
offset_value = value_ptr + offset_load
|
|
|
|
offset_store = (cfg * query_stride_b + head * query_stride_h + offset_store_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d
|
|
offset_query_out = query_out_ptr + offset_store
|
|
offset_key_out = key_out_ptr + offset_store
|
|
offset_value_out = value_out_ptr + offset_store
|
|
|
|
|
|
query = tl.load(offset_query, mask=offset_mask[:,None])
|
|
tl.store(offset_query_out, query, mask=offset_mask[:,None])
|
|
key = tl.load(offset_key, mask=offset_mask[:,None])
|
|
tl.store(offset_key_out, key, mask=offset_mask[:,None])
|
|
value = tl.load(offset_value, mask=offset_mask[:,None])
|
|
tl.store(offset_value_out, value, mask=offset_mask[:,None])
|
|
|
|
|
|
else:
|
|
offset_load = (cfg * query_stride_b + head * query_stride_h + offset_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d
|
|
offset_query = query_ptr + offset_load
|
|
offset_key = key_ptr + offset_load
|
|
offset_value = value_ptr + offset_load
|
|
|
|
offset_store = offset_load
|
|
offset_query_out = query_out_ptr + offset_store
|
|
offset_key_out = key_out_ptr + offset_store
|
|
offset_value_out = value_out_ptr + offset_store
|
|
|
|
|
|
query = tl.load(offset_query, mask=offset_mask[:,None])
|
|
tl.store(offset_query_out, query, mask=offset_mask[:,None])
|
|
key = tl.load(offset_key, mask=offset_mask[:,None])
|
|
tl.store(offset_key_out, key, mask=offset_mask[:,None])
|
|
value = tl.load(offset_value, mask=offset_mask[:,None])
|
|
tl.store(offset_value_out, value, mask=offset_mask[:,None])
|
|
|
|
|
|
def hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size):
|
|
cfg, num_heads, seq_len, head_dim = query.shape
|
|
BLOCK_SIZE = 128
|
|
assert seq_len == context_length + num_frame * frame_size
|
|
|
|
grid = (cfg, num_heads, (seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE)
|
|
|
|
hunyuan_sparse_head_placement_kernel[grid](
|
|
query, key, value,
|
|
query_out, key_out, value_out,
|
|
best_mask_idx,
|
|
query.stride(0), query.stride(1), query.stride(2), query.stride(3),
|
|
best_mask_idx.stride(0), best_mask_idx.stride(1),
|
|
seq_len, head_dim, context_length, num_frame, frame_size,
|
|
BLOCK_SIZE
|
|
)
|
|
|
|
|
|
def ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size):
|
|
cfg, num_heads, seq_len, head_dim = query.shape
|
|
assert seq_len == context_length + num_frame * frame_size
|
|
|
|
query_out = query.clone()
|
|
key_out = key.clone()
|
|
value_out = value.clone()
|
|
|
|
|
|
query_out[best_mask_idx == 0], key_out[best_mask_idx == 0], value_out[best_mask_idx == 0] = \
|
|
query[best_mask_idx == 0], key[best_mask_idx == 0], value[best_mask_idx == 0]
|
|
|
|
|
|
query_out[best_mask_idx == 1], key_out[best_mask_idx == 1], value_out[best_mask_idx == 1] = \
|
|
hunyuan_token_reorder_to_token_major(query[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0), \
|
|
hunyuan_token_reorder_to_token_major(key[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0), \
|
|
hunyuan_token_reorder_to_token_major(value[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0)
|
|
|
|
return query_out, key_out, value_out
|
|
|
|
|
|
def test_hunyuan_sparse_head_placement():
|
|
|
|
context_length = 226
|
|
num_frame = 11
|
|
frame_size = 4080
|
|
|
|
cfg = 2
|
|
num_heads = 48
|
|
|
|
seq_len = context_length + num_frame * frame_size
|
|
head_dim = 64
|
|
|
|
dtype = torch.bfloat16
|
|
device = torch.device("cuda")
|
|
|
|
query = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
key = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
value = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
|
|
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)
|
|
|
|
query_out = torch.empty_like(query)
|
|
key_out = torch.empty_like(key)
|
|
value_out = torch.empty_like(value)
|
|
|
|
hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size)
|
|
ref_query_out, ref_key_out, ref_value_out = ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size)
|
|
|
|
torch.testing.assert_close(query_out, ref_query_out)
|
|
torch.testing.assert_close(key_out, ref_key_out)
|
|
torch.testing.assert_close(value_out, ref_value_out)
|
|
|
|
|
|
def benchmark_hunyuan_sparse_head_placement():
|
|
import time
|
|
|
|
context_length = 226
|
|
num_frame = 11
|
|
frame_size = 4080
|
|
|
|
cfg = 2
|
|
num_heads = 48
|
|
|
|
seq_len = context_length + num_frame * frame_size
|
|
head_dim = 64
|
|
|
|
dtype = torch.bfloat16
|
|
device = torch.device("cuda")
|
|
|
|
query = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
key = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
value = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)
|
|
|
|
query_out = torch.empty_like(query)
|
|
key_out = torch.empty_like(key)
|
|
value_out = torch.empty_like(value)
|
|
|
|
warmup = 10
|
|
all_iter = 1000
|
|
|
|
|
|
for _ in range(warmup):
|
|
hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size)
|
|
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
for _ in range(all_iter):
|
|
hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size)
|
|
torch.cuda.synchronize()
|
|
end = time.time()
|
|
|
|
print(f"Triton Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
|
|
print(f"Triton Total Bandwidth: {query.nelement() * query.element_size() * 3 * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")
|
|
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
for _ in range(all_iter):
|
|
ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size)
|
|
torch.cuda.synchronize()
|
|
end = time.time()
|
|
|
|
print(f"Reference Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
|
|
print(f"Reference Total Bandwidth: {query.nelement() * query.element_size() * 3 * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")
|
|
|
|
|
|
@triton.jit
|
|
def hunyuan_hidden_states_placement_kernel(
|
|
hidden_states_ptr,
|
|
hidden_states_out_ptr,
|
|
best_mask_idx_ptr,
|
|
hidden_states_stride_b, hidden_states_stride_h, hidden_states_stride_s, hidden_states_stride_d,
|
|
mask_idx_stride_b, mask_idx_stride_h,
|
|
seq_len: tl.constexpr,
|
|
head_dim: tl.constexpr,
|
|
context_length: tl.constexpr,
|
|
num_frame: tl.constexpr,
|
|
frame_size: tl.constexpr,
|
|
BLOCK_SIZE: tl.constexpr
|
|
):
|
|
|
|
|
|
cfg = tl.program_id(0)
|
|
head = tl.program_id(1)
|
|
block_id = tl.program_id(2)
|
|
|
|
start_id = block_id * BLOCK_SIZE
|
|
end_id = start_id + BLOCK_SIZE
|
|
end_id = tl.where(end_id > seq_len, seq_len, end_id)
|
|
|
|
|
|
is_temporal = tl.load(best_mask_idx_ptr + cfg * mask_idx_stride_b + head * mask_idx_stride_h)
|
|
|
|
offset_token = tl.arange(0, BLOCK_SIZE) + start_id
|
|
offset_mask = offset_token < seq_len
|
|
offset_d = tl.arange(0, head_dim)
|
|
|
|
if is_temporal:
|
|
patch_id = offset_token // num_frame
|
|
frame_id = offset_token - patch_id * num_frame
|
|
offset_store_token = tl.where(offset_token >= seq_len - context_length, offset_token, frame_id * frame_size + patch_id)
|
|
|
|
offset_load = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d
|
|
offset_hidden_states = hidden_states_ptr + offset_load
|
|
|
|
offset_store = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_store_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d
|
|
offset_hidden_states_out = hidden_states_out_ptr + offset_store
|
|
|
|
|
|
hidden_states = tl.load(offset_hidden_states, mask=offset_mask[:,None])
|
|
tl.store(offset_hidden_states_out, hidden_states, mask=offset_mask[:,None])
|
|
else:
|
|
offset_load = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d
|
|
offset_hidden_states = hidden_states_ptr + offset_load
|
|
|
|
offset_store = offset_load
|
|
offset_hidden_states_out = hidden_states_out_ptr + offset_store
|
|
|
|
|
|
hidden_states = tl.load(offset_hidden_states, mask=offset_mask[:,None])
|
|
tl.store(offset_hidden_states_out, hidden_states, mask=offset_mask[:,None])
|
|
|
|
|
|
def hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size):
|
|
cfg, num_heads, seq_len, head_dim = hidden_states.shape
|
|
BLOCK_SIZE = 128
|
|
assert seq_len == context_length + num_frame * frame_size
|
|
|
|
grid = (cfg, num_heads, (seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE)
|
|
|
|
|
|
hunyuan_hidden_states_placement_kernel[grid](
|
|
hidden_states,
|
|
hidden_states_out,
|
|
best_mask_idx,
|
|
hidden_states.stride(0), hidden_states.stride(1), hidden_states.stride(2), hidden_states.stride(3),
|
|
best_mask_idx.stride(0), best_mask_idx.stride(1),
|
|
seq_len, head_dim, context_length, num_frame, frame_size,
|
|
BLOCK_SIZE
|
|
)
|
|
|
|
return hidden_states_out
|
|
|
|
def ref_hunyuan_hidden_states_placement(hidden_states, output_hidden_states, best_mask_idx, context_length, num_frame, frame_size):
|
|
cfg, num_heads, seq_len, head_dim = hidden_states.shape
|
|
assert seq_len == context_length + num_frame * frame_size
|
|
|
|
|
|
output_hidden_states[best_mask_idx == 0] = hidden_states[best_mask_idx == 0]
|
|
|
|
output_hidden_states[best_mask_idx == 1] = hunyuan_token_reorder_to_frame_major(hidden_states[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0)
|
|
|
|
def test_hunyuan_hidden_states_placement():
|
|
|
|
context_length = 226
|
|
num_frame = 11
|
|
frame_size = 4080
|
|
|
|
cfg = 2
|
|
num_heads = 48
|
|
|
|
seq_len = context_length + num_frame * frame_size
|
|
head_dim = 64
|
|
|
|
dtype = torch.bfloat16
|
|
device = torch.device("cuda")
|
|
|
|
hidden_states = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)
|
|
|
|
hidden_states_out1 = torch.empty_like(hidden_states)
|
|
hidden_states_out2 = torch.empty_like(hidden_states)
|
|
|
|
hunyuan_hidden_states_placement(hidden_states, hidden_states_out1, best_mask_idx, context_length, num_frame, frame_size)
|
|
ref_hunyuan_hidden_states_placement(hidden_states, hidden_states_out2, best_mask_idx, context_length, num_frame, frame_size)
|
|
|
|
torch.testing.assert_close(hidden_states_out1, hidden_states_out2)
|
|
|
|
def benchmark_hunyuan_hidden_states_placement():
|
|
import time
|
|
|
|
context_length = 226
|
|
num_frame = 11
|
|
frame_size = 4080
|
|
|
|
cfg = 2
|
|
num_heads = 48
|
|
|
|
seq_len = context_length + num_frame * frame_size
|
|
head_dim = 64
|
|
|
|
dtype = torch.bfloat16
|
|
device = torch.device("cuda")
|
|
|
|
hidden_states = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
|
|
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)
|
|
|
|
hidden_states_out = torch.empty_like(hidden_states)
|
|
|
|
warmup = 10
|
|
all_iter = 1000
|
|
|
|
|
|
for _ in range(warmup):
|
|
hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size)
|
|
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
for _ in range(all_iter):
|
|
hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size)
|
|
torch.cuda.synchronize()
|
|
end = time.time()
|
|
|
|
print(f"Triton Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
|
|
print(f"Triton Total Bandwidth: {hidden_states.nelement() * hidden_states.element_size() * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")
|
|
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
for _ in range(all_iter):
|
|
ref_hunyuan_hidden_states_placement(hidden_states, hidden_states.clone(), best_mask_idx, context_length, num_frame, frame_size)
|
|
torch.cuda.synchronize()
|
|
end = time.time()
|
|
|
|
print(f"Reference Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
|
|
print(f"Reference Total Bandwidth: {hidden_states.nelement() * hidden_states.element_size() * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_hunyuan_sparse_head_placement()
|
|
benchmark_hunyuan_sparse_head_placement()
|
|
test_hunyuan_hidden_states_placement()
|
|
benchmark_hunyuan_hidden_states_placement()
|
|
|