|
"""Mask Mod for Image2Video"""
|
|
|
|
from math import floor
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
|
|
from functools import lru_cache
|
|
from typing import Optional, List
|
|
|
|
import torch
|
|
from torch.nn.attention.flex_attention import (
|
|
create_block_mask,
|
|
)
|
|
|
|
|
|
@lru_cache
|
|
def create_block_mask_cached(score_mod, B, H, M, N, device="cuda", _compile=False):
|
|
block_mask = create_block_mask(score_mod, B, H, M, N, device=device, _compile=_compile)
|
|
return block_mask
|
|
|
|
def generate_temporal_head_mask_mod(context_length: int = 226, prompt_length: int = 226, num_frames: int = 13, token_per_frame: int = 1350, mul: int = 2):
|
|
|
|
def round_to_multiple(idx):
|
|
return floor(idx / 128) * 128
|
|
|
|
real_length = num_frames * token_per_frame + prompt_length
|
|
def temporal_mask_mod(b, h, q_idx, kv_idx):
|
|
real_mask = (kv_idx < real_length) & (q_idx < real_length)
|
|
fake_mask = (kv_idx >= real_length) & (q_idx >= real_length)
|
|
|
|
two_frame = round_to_multiple(mul * token_per_frame)
|
|
temporal_head_mask = (torch.abs(q_idx - kv_idx) < two_frame)
|
|
|
|
text_column_mask = (num_frames * token_per_frame <= kv_idx) & (kv_idx < real_length)
|
|
text_row_mask = (num_frames * token_per_frame <= q_idx) & (q_idx < real_length)
|
|
|
|
video_mask = temporal_head_mask | text_column_mask | text_row_mask
|
|
real_mask = real_mask & video_mask
|
|
|
|
return real_mask | fake_mask
|
|
|
|
return temporal_mask_mod
|
|
|