File size: 20,403 Bytes
9b2f298
ee0cb34
61279f3
ee0cb34
 
6ed5f50
225994f
6ed5f50
225994f
 
 
 
 
6ed5f50
225994f
 
 
 
 
 
6ed5f50
9b2f298
61279f3
9b2f298
 
61279f3
9b2f298
61279f3
9b2f298
61279f3
9b2f298
61279f3
 
 
 
 
 
9b2f298
61279f3
 
ee0cb34
61279f3
 
 
 
 
ee0cb34
61279f3
ee0cb34
61279f3
 
 
ee0cb34
61279f3
ee0cb34
61279f3
 
 
ee0cb34
61279f3
6ed5f50
61279f3
 
 
 
 
6ed5f50
61279f3
6ed5f50
97286e7
 
61279f3
 
 
9b2f298
 
225994f
6ed5f50
 
225994f
 
 
 
 
 
6ed5f50
 
225994f
6ed5f50
 
 
 
 
 
 
 
 
 
225994f
 
 
6ed5f50
 
ee0cb34
 
 
225994f
 
6ed5f50
225994f
6ed5f50
ee0cb34
225994f
 
 
6ed5f50
225994f
6ed5f50
ee0cb34
 
 
225994f
 
 
 
 
 
 
6ed5f50
225994f
 
ee0cb34
225994f
ee0cb34
 
6ed5f50
ee0cb34
 
 
 
 
 
 
225994f
ee0cb34
 
 
 
 
225994f
ee0cb34
 
 
 
225994f
 
ee0cb34
 
 
 
 
 
 
225994f
 
ee0cb34
6ed5f50
225994f
 
 
ee0cb34
 
 
 
 
6ed5f50
ee0cb34
 
 
 
 
 
 
 
 
 
 
6ed5f50
ee0cb34
6ed5f50
 
225994f
 
 
 
 
ee0cb34
225994f
 
 
 
 
 
 
 
 
 
 
6ed5f50
225994f
 
 
6ed5f50
 
 
 
 
 
225994f
6ed5f50
 
ee0cb34
225994f
 
 
97286e7
225994f
6ed5f50
 
225994f
61279f3
225994f
6ed5f50
225994f
 
6ed5f50
225994f
 
ee0cb34
6ed5f50
 
 
 
 
225994f
 
6ed5f50
 
97286e7
 
ee0cb34
6ed5f50
97286e7
 
6ed5f50
225994f
97286e7
6ed5f50
ee0cb34
6ed5f50
ee0cb34
 
6ed5f50
ee0cb34
97286e7
99986b4
97286e7
 
 
ee0cb34
 
 
 
6ed5f50
97286e7
6ed5f50
 
 
ee0cb34
 
 
 
 
 
 
 
225994f
 
ee0cb34
 
 
 
97286e7
 
 
ee0cb34
 
 
 
 
6ed5f50
ee0cb34
6ed5f50
 
 
 
 
ee0cb34
97286e7
 
 
 
 
ee0cb34
 
6ed5f50
 
 
 
 
ee0cb34
 
6ed5f50
 
 
 
 
 
61279f3
6ed5f50
 
 
ee0cb34
225994f
6ed5f50
97286e7
225994f
97286e7
 
 
 
 
 
 
61279f3
97286e7
 
61279f3
97286e7
 
 
 
 
 
 
 
 
 
 
6ed5f50
97286e7
9b2f298
61279f3
 
6ed5f50
9b2f298
6ed5f50
9b2f298
99986b4
97286e7
9b2f298
97286e7
 
9b2f298
 
6ed5f50
9b2f298
ee0cb34
9b2f298
97286e7
 
9b2f298
 
97286e7
 
 
6ed5f50
97286e7
6ed5f50
 
97286e7
ee0cb34
97286e7
ee0cb34
 
 
 
 
97286e7
ee0cb34
 
 
 
97286e7
 
ee0cb34
 
97286e7
ee0cb34
 
97286e7
ee0cb34
97286e7
ee0cb34
 
6ed5f50
 
 
 
 
97286e7
 
6ed5f50
9b2f298
6ed5f50
97286e7
 
9b2f298
 
 
 
 
97286e7
9b2f298
 
 
 
 
 
97286e7
9b2f298
7d0296f
6ed5f50
7d0296f
 
 
 
97286e7
6ed5f50
97286e7
6ed5f50
ee0cb34
97286e7
 
 
 
99986b4
97286e7
61279f3
97286e7
 
 
 
 
61279f3
6ed5f50
97286e7
 
99986b4
 
97286e7
61279f3
97286e7
 
 
 
 
61279f3
ee0cb34
6ed5f50
ee0cb34
97286e7
ee0cb34
 
 
 
 
 
97286e7
ee0cb34
 
 
 
 
97286e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0cb34
97286e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0cb34
7d0296f
97286e7
99986b4
 
 
 
 
97286e7
99986b4
 
7d0296f
 
97286e7
 
 
 
 
 
ee0cb34
97286e7
 
 
 
7d0296f
61279f3
97286e7
 
 
61279f3
6ed5f50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import gradio as gr
import os
from typing import List, Dict, Any, Optional, Tuple
import hashlib
from datetime import datetime
import numpy as np

# PDF ์ฒ˜๋ฆฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
try:
    import fitz  # PyMuPDF
    PDF_AVAILABLE = True
except ImportError:
    PDF_AVAILABLE = False
    print("โš ๏ธ PyMuPDF not installed. Install with: pip install pymupdf")

try:
    from sentence_transformers import SentenceTransformer
    ST_AVAILABLE = True
except ImportError:
    ST_AVAILABLE = False
    print("โš ๏ธ Sentence Transformers not installed. Install with: pip install sentence-transformers")

# Soft and bright custom CSS
custom_css = """
.gradio-container {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    min-height: 100vh;
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}

.main-container {
    background: rgba(255, 255, 255, 0.98);
    border-radius: 16px;
    padding: 24px;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
    border: 1px solid rgba(0, 0, 0, 0.05);
    margin: 12px;
}

/* Status messages styling */
.pdf-status {
    padding: 12px 16px;
    border-radius: 12px;
    margin: 12px 0;
    font-size: 0.95rem;
    font-weight: 500;
}

.pdf-success {
    background: linear-gradient(135deg, #d4edda 0%, #c3e6cb 100%);
    border: 1px solid #b1dfbb;
    color: #155724;
}

.pdf-error {
    background: linear-gradient(135deg, #f8d7da 0%, #f5c6cb 100%);
    border: 1px solid #f1aeb5;
    color: #721c24;
}

.pdf-info {
    background: linear-gradient(135deg, #d1ecf1 0%, #bee5eb 100%);
    border: 1px solid #9ec5d8;
    color: #0c5460;
}

.rag-context {
    background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
    border-left: 4px solid #f59e0b;
    padding: 12px;
    margin: 12px 0;
    border-radius: 8px;
    font-size: 0.9rem;
}
"""

class SimpleTextSplitter:
    """ํ…์ŠคํŠธ ๋ถ„ํ• ๊ธฐ"""
    def __init__(self, chunk_size=800, chunk_overlap=100):
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap
    
    def split_text(self, text: str) -> List[str]:
        """ํ…์ŠคํŠธ๋ฅผ ์ฒญํฌ๋กœ ๋ถ„ํ• """
        chunks = []
        sentences = text.split('. ')
        current_chunk = ""
        
        for sentence in sentences:
            if len(current_chunk) + len(sentence) < self.chunk_size:
                current_chunk += sentence + ". "
            else:
                if current_chunk:
                    chunks.append(current_chunk.strip())
                current_chunk = sentence + ". "
        
        if current_chunk:
            chunks.append(current_chunk.strip())
        
        return chunks

class PDFRAGSystem:
    """PDF ๊ธฐ๋ฐ˜ RAG ์‹œ์Šคํ…œ"""
    
    def __init__(self):
        self.documents = {}
        self.document_chunks = {}
        self.embeddings_store = {}
        self.text_splitter = SimpleTextSplitter(chunk_size=800, chunk_overlap=100)
        
        # ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
        self.embedder = None
        if ST_AVAILABLE:
            try:
                self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
                print("โœ… ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ ์„ฑ๊ณต")
            except Exception as e:
                print(f"โš ๏ธ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ ์‹คํŒจ: {e}")
    
    def extract_text_from_pdf(self, pdf_path: str) -> Dict[str, Any]:
        """PDF์—์„œ ํ…์ŠคํŠธ ์ถ”์ถœ"""
        if not PDF_AVAILABLE:
            return {
                "metadata": {
                    "title": "PDF Reader Not Available",
                    "file_name": os.path.basename(pdf_path),
                    "pages": 0
                },
                "full_text": "PDF ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด 'pip install pymupdf'๋ฅผ ์‹คํ–‰ํ•ด์ฃผ์„ธ์š”."
            }
        
        try:
            doc = fitz.open(pdf_path)
            text_content = []
            metadata = {
                "title": doc.metadata.get("title", os.path.basename(pdf_path)),
                "pages": len(doc),
                "file_name": os.path.basename(pdf_path)
            }
            
            for page_num, page in enumerate(doc):
                text = page.get_text()
                if text.strip():
                    text_content.append(text)
            
            doc.close()
            
            return {
                "metadata": metadata,
                "full_text": "\n\n".join(text_content)
            }
        except Exception as e:
            raise Exception(f"PDF ์ฒ˜๋ฆฌ ์˜ค๋ฅ˜: {str(e)}")
    
    def process_and_store_pdf(self, pdf_path: str, doc_id: str) -> Dict[str, Any]:
        """PDF ์ฒ˜๋ฆฌ ๋ฐ ์ €์žฅ"""
        try:
            # PDF ํ…์ŠคํŠธ ์ถ”์ถœ
            pdf_data = self.extract_text_from_pdf(pdf_path)
            
            # ํ…์ŠคํŠธ๋ฅผ ์ฒญํฌ๋กœ ๋ถ„ํ• 
            chunks = self.text_splitter.split_text(pdf_data["full_text"])
            
            # ์ฒญํฌ ์ €์žฅ
            self.document_chunks[doc_id] = chunks
            
            # ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
            if self.embedder:
                embeddings = self.embedder.encode(chunks)
                self.embeddings_store[doc_id] = embeddings
            
            # ๋ฌธ์„œ ์ •๋ณด ์ €์žฅ
            self.documents[doc_id] = {
                "metadata": pdf_data["metadata"],
                "chunk_count": len(chunks),
                "upload_time": datetime.now().isoformat()
            }
            
            return {
                "success": True,
                "doc_id": doc_id,
                "chunks": len(chunks),
                "pages": pdf_data["metadata"]["pages"],
                "title": pdf_data["metadata"]["title"]
            }
            
        except Exception as e:
            return {"success": False, "error": str(e)}
    
    def search_relevant_chunks(self, query: str, doc_ids: List[str], top_k: int = 3) -> List[Dict]:
        """๊ด€๋ จ ์ฒญํฌ ๊ฒ€์ƒ‰"""
        all_relevant_chunks = []
        
        if self.embedder and self.embeddings_store:
            # ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰
            query_embedding = self.embedder.encode([query])[0]
            
            for doc_id in doc_ids:
                if doc_id in self.embeddings_store and doc_id in self.document_chunks:
                    doc_embeddings = self.embeddings_store[doc_id]
                    chunks = self.document_chunks[doc_id]
                    
                    # ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
                    similarities = []
                    for emb in doc_embeddings:
                        sim = np.dot(query_embedding, emb) / (np.linalg.norm(query_embedding) * np.linalg.norm(emb))
                        similarities.append(sim)
                    
                    # ์ƒ์œ„ ์ฒญํฌ ์„ ํƒ
                    top_indices = np.argsort(similarities)[-top_k:][::-1]
                    
                    for idx in top_indices:
                        if similarities[idx] > 0.2:
                            all_relevant_chunks.append({
                                "content": chunks[idx],
                                "doc_name": self.documents[doc_id]["metadata"]["file_name"],
                                "similarity": similarities[idx]
                            })
        else:
            # ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰
            query_keywords = set(query.lower().split())
            
            for doc_id in doc_ids:
                if doc_id in self.document_chunks:
                    chunks = self.document_chunks[doc_id]
                    for i, chunk in enumerate(chunks[:5]):  # ์ฒ˜์Œ 5๊ฐœ๋งŒ
                        chunk_lower = chunk.lower()
                        score = sum(1 for keyword in query_keywords if keyword in chunk_lower)
                        if score > 0:
                            all_relevant_chunks.append({
                                "content": chunk[:500],
                                "doc_name": self.documents[doc_id]["metadata"]["file_name"],
                                "similarity": score / len(query_keywords) if query_keywords else 0
                            })
        
        # ์ •๋ ฌ ๋ฐ ๋ฐ˜ํ™˜
        all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
        return all_relevant_chunks[:top_k]
    
    def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> str:
        """RAG ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ"""
        relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
        
        if not relevant_chunks:
            return query
        
        # ํ”„๋กฌํ”„ํŠธ ๊ตฌ์„ฑ
        prompt_parts = []
        prompt_parts.append("๋‹ค์Œ ๋ฌธ์„œ ๋‚ด์šฉ์„ ์ฐธ๊ณ ํ•˜์—ฌ ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”:\n")
        prompt_parts.append("=" * 40)
        
        for i, chunk in enumerate(relevant_chunks, 1):
            prompt_parts.append(f"\n[์ฐธ๊ณ  {i} - {chunk['doc_name']}]")
            content = chunk['content'][:300] if len(chunk['content']) > 300 else chunk['content']
            prompt_parts.append(content)
        
        prompt_parts.append("\n" + "=" * 40)
        prompt_parts.append(f"\n์งˆ๋ฌธ: {query}")
        
        return "\n".join(prompt_parts)

# RAG ์‹œ์Šคํ…œ ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ
rag_system = PDFRAGSystem()

# State variable to track current model and RAG settings
current_model = gr.State("openai/gpt-oss-120b")
rag_enabled_state = gr.State(False)
selected_docs_state = gr.State([])
top_k_state = gr.State(3)

def upload_pdf(file):
    """PDF ํŒŒ์ผ ์—…๋กœ๋“œ ์ฒ˜๋ฆฌ"""
    if file is None:
        return (
            gr.update(value="<div class='pdf-status pdf-info'>๐Ÿ“ ํŒŒ์ผ์„ ์„ ํƒํ•ด์ฃผ์„ธ์š”</div>"),
            gr.update(choices=[]),
            gr.update(value=False)
        )
    
    try:
        # ํŒŒ์ผ ํ•ด์‹œ๋ฅผ ID๋กœ ์‚ฌ์šฉ
        with open(file.name, 'rb') as f:
            file_hash = hashlib.md5(f.read()).hexdigest()[:8]
        
        doc_id = f"doc_{file_hash}"
        
        # PDF ์ฒ˜๋ฆฌ ๋ฐ ์ €์žฅ
        result = rag_system.process_and_store_pdf(file.name, doc_id)
        
        if result["success"]:
            status_html = f"""
            <div class="pdf-status pdf-success">
                โœ… PDF ์—…๋กœ๋“œ ์™„๋ฃŒ!<br>
                ๐Ÿ“„ {result['title']}<br>
                ๐Ÿ“‘ {result['pages']} ํŽ˜์ด์ง€ | ๐Ÿ” {result['chunks']} ์ฒญํฌ
            </div>
            """
            
            # ๋ฌธ์„œ ๋ชฉ๋ก ์—…๋ฐ์ดํŠธ
            doc_choices = [f"{doc_id}: {rag_system.documents[doc_id]['metadata']['file_name']}" 
                          for doc_id in rag_system.documents.keys()]
            
            return (
                status_html,
                gr.update(choices=doc_choices, value=doc_choices),
                gr.update(value=True)
            )
        else:
            return (
                f"<div class='pdf-status pdf-error'>โŒ ์˜ค๋ฅ˜: {result['error']}</div>",
                gr.update(),
                gr.update(value=False)
            )
            
    except Exception as e:
        return (
            f"<div class='pdf-status pdf-error'>โŒ ์˜ค๋ฅ˜: {str(e)}</div>",
            gr.update(),
            gr.update(value=False)
        )

def clear_documents():
    """๋ฌธ์„œ ์ดˆ๊ธฐํ™”"""
    rag_system.documents = {}
    rag_system.document_chunks = {}
    rag_system.embeddings_store = {}
    
    return (
        gr.update(value="<div class='pdf-status pdf-info'>๐Ÿ—‘๏ธ ๋ชจ๋“  ๋ฌธ์„œ๊ฐ€ ์‚ญ์ œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค</div>"),
        gr.update(choices=[], value=[]),
        gr.update(value=False)
    )

def switch_model(model_choice):
    """Function to switch between models"""
    return gr.update(visible=False), gr.update(visible=True), model_choice

def create_rag_wrapper(original_fn, model_name):
    """์›๋ณธ ๋ชจ๋ธ ํ•จ์ˆ˜๋ฅผ RAG๋กœ ๊ฐ์‹ธ๋Š” ๋ž˜ํผ ์ƒ์„ฑ"""
    def wrapped_fn(message, history=None):
        # RAG ์„ค์ • ๊ฐ€์ ธ์˜ค๊ธฐ
        if rag_enabled_state.value and selected_docs_state.value:
            doc_ids = [doc.split(":")[0] for doc in selected_docs_state.value]
            enhanced_message = rag_system.create_rag_prompt(message, doc_ids, top_k_state.value)
            
            # RAG ์ ์šฉ ์•Œ๋ฆผ
            print(f"๐Ÿ” RAG ์ ์šฉ: {len(message)}์ž โ†’ {len(enhanced_message)}์ž")
            
            # ์›๋ณธ ๋ชจ๋ธ์— ๊ฐ•ํ™”๋œ ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ
            if history is not None:
                return original_fn(enhanced_message, history)
            else:
                return original_fn(enhanced_message)
        else:
            # RAG ๋ฏธ์ ์šฉ์‹œ ์›๋ณธ ๋ฉ”์‹œ์ง€ ๊ทธ๋Œ€๋กœ ์ „๋‹ฌ
            if history is not None:
                return original_fn(message, history)
            else:
                return original_fn(message)
    
    return wrapped_fn

# Main interface with soft theme
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(), css=custom_css) as demo:
    
    with gr.Row():
        # Sidebar
        with gr.Column(scale=1):
            with gr.Group(elem_classes="main-container"):
                gr.Markdown("# ๐Ÿš€ Inference Provider + RAG")
                gr.Markdown(
                    "OpenAI GPT-OSS models served by Cerebras API. "
                    "Upload PDF documents for context-aware responses."
                )
                
                # Model selection
                model_dropdown = gr.Dropdown(
                    choices=["openai/gpt-oss-120b", "openai/gpt-oss-20b"],
                    value="openai/gpt-oss-120b",
                    label="๐Ÿ“Š Select Model",
                    info="Choose between different model sizes"
                )
                
                # Login button
                login_button = gr.LoginButton("Sign in with Hugging Face", size="lg")
                
                # Reload button to apply model change
                reload_btn = gr.Button("๐Ÿ”„ Apply Model Change", variant="primary", size="lg")
                
                # RAG Settings
                with gr.Accordion("๐Ÿ“š PDF RAG Settings", open=True):
                    pdf_upload = gr.File(
                        label="Upload PDF",
                        file_types=[".pdf"],
                        type="filepath"
                    )
                    
                    upload_status = gr.HTML(
                        value="<div class='pdf-status pdf-info'>๐Ÿ“ค Upload a PDF to enable document-based answers</div>"
                    )
                    
                    document_list = gr.CheckboxGroup(
                        choices=[],
                        label="๐Ÿ“„ Uploaded Documents",
                        info="Select documents to use as context"
                    )
                    
                    clear_btn = gr.Button("๐Ÿ—‘๏ธ Clear All Documents", size="sm", variant="secondary")
                    
                    enable_rag = gr.Checkbox(
                        label="โœจ Enable RAG",
                        value=False,
                        info="Use documents for context-aware responses"
                    )
                    
                    top_k_chunks = gr.Slider(
                        minimum=1,
                        maximum=5,
                        value=3,
                        step=1,
                        label="Context Chunks",
                        info="Number of document chunks to use"
                    )
                
                # Additional options
                with gr.Accordion("โš™๏ธ Advanced Options", open=False):
                    gr.Markdown("*These options will be available after model implementation*")
                    temperature = gr.Slider(
                        minimum=0,
                        maximum=2,
                        value=0.7,
                        step=0.1,
                        label="Temperature"
                    )
                    max_tokens = gr.Slider(
                        minimum=1,
                        maximum=4096,
                        value=512,
                        step=1,
                        label="Max Tokens"
                    )
        
        # Main chat area
        with gr.Column(scale=3):
            with gr.Group(elem_classes="main-container"):
                gr.Markdown("## ๐Ÿ’ฌ Chat Interface")
                
                # RAG status
                rag_status = gr.HTML(
                    value="<div class='pdf-status pdf-info'>๐Ÿ” RAG: <strong>Disabled</strong></div>"
                )
                
                # RAG context preview
                context_preview = gr.HTML(value="", visible=False)
                
                # Container for model interfaces
                with gr.Column(visible=True) as model_120b_container:
                    gr.Markdown("### Model: openai/gpt-oss-120b")
                    
                    # Load the original model and wrap it with RAG
                    original_interface_120b = gr.load(
                        "models/openai/gpt-oss-120b",
                        accept_token=login_button,
                        provider="fireworks-ai"
                    )
                    
                    # Note: The loaded interface will have its own chat components
                    # We'll intercept the messages through our wrapper function
                
                with gr.Column(visible=False) as model_20b_container:
                    gr.Markdown("### Model: openai/gpt-oss-20b")
                    
                    # Load the original model
                    original_interface_20b = gr.load(
                        "models/openai/gpt-oss-20b",
                        accept_token=login_button,
                        provider="fireworks-ai"
                    )
    
    # Event Handlers
    
    # PDF upload
    pdf_upload.upload(
        fn=upload_pdf,
        inputs=[pdf_upload],
        outputs=[upload_status, document_list, enable_rag]
    )
    
    # Clear documents
    clear_btn.click(
        fn=clear_documents,
        outputs=[upload_status, document_list, enable_rag]
    )
    
    # Update RAG state when settings change
    def update_rag_state(enabled, docs, k):
        rag_enabled_state.value = enabled
        selected_docs_state.value = docs if docs else []
        top_k_state.value = k
        
        status = "โœ… Enabled" if enabled and docs else "โญ• Disabled"
        status_html = f"<div class='pdf-status pdf-info'>๐Ÿ” RAG: <strong>{status}</strong></div>"
        
        # Show context preview if RAG is enabled
        if enabled and docs:
            preview = f"<div class='rag-context'>๐Ÿ“š Using {len(docs)} document(s) with {k} chunks per query</div>"
            return gr.update(value=status_html), gr.update(value=preview, visible=True)
        else:
            return gr.update(value=status_html), gr.update(value="", visible=False)
    
    # Connect RAG state updates
    enable_rag.change(
        fn=update_rag_state,
        inputs=[enable_rag, document_list, top_k_chunks],
        outputs=[rag_status, context_preview]
    )
    
    document_list.change(
        fn=update_rag_state,
        inputs=[enable_rag, document_list, top_k_chunks],
        outputs=[rag_status, context_preview]
    )
    
    top_k_chunks.change(
        fn=update_rag_state,
        inputs=[enable_rag, document_list, top_k_chunks],
        outputs=[rag_status, context_preview]
    )
    
    # Handle model switching
    reload_btn.click(
        fn=switch_model,
        inputs=[model_dropdown],
        outputs=[model_120b_container, model_20b_container, current_model]
    ).then(
        fn=lambda: gr.Info("Model switched successfully!"),
        inputs=[],
        outputs=[]
    )
    
    # Update visibility based on dropdown selection
    def update_visibility(model_choice):
        if model_choice == "openai/gpt-oss-120b":
            return gr.update(visible=True), gr.update(visible=False)
        else:
            return gr.update(visible=False), gr.update(visible=True)
    
    model_dropdown.change(
        fn=update_visibility,
        inputs=[model_dropdown],
        outputs=[model_120b_container, model_20b_container]
    )
    
    # Monkey-patch the loaded interfaces to add RAG support
    # This is done after the interface is loaded
    demo.load = lambda: print("๐Ÿ“š RAG System Ready!")

demo.launch()