Spaces:
Runtime error
Runtime error
import time | |
import gradio as gr | |
import torch | |
from einops import rearrange, repeat | |
from PIL import Image | |
import numpy as np | |
from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack | |
from flux.util import ( | |
SamplingOptions, | |
load_ae, | |
load_clip, | |
load_flow_model, | |
load_t5, | |
) | |
from pulid.pipeline_flux import PuLIDPipeline | |
from pulid.utils import resize_numpy_image_long, seed_everything | |
# ๊ฐ๋จํ ์ธ์ฉ ์ ๋ณด ์ถ๊ฐ | |
_CITE_ = """PuLID: Person-under-Language Image Diffusion Model""" | |
# GPU ์ฌ์ฉ ๊ฐ๋ฅ ์ฌ๋ถ ํ์ธ ๋ฐ ์ฅ์น ์ค์ | |
def get_device(): | |
if torch.cuda.is_available(): | |
return torch.device('cuda') | |
else: | |
print("CUDA GPU๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค. CPU๋ฅผ ์ฌ์ฉํฉ๋๋ค.") | |
return torch.device('cpu') | |
def get_models(name: str, device, offload: bool): | |
print(f"๋ชจ๋ธ์ {device}์ ๋ก๋ํฉ๋๋ค.") | |
t5 = load_t5(device, max_length=128) | |
clip_model = load_clip(device) | |
model = load_flow_model(name, device="cpu" if offload else device) | |
model.eval() | |
ae = load_ae(name, device="cpu" if offload else device) | |
return model, ae, t5, clip_model | |
class FluxGenerator: | |
def __init__(self): | |
# GPU ์ฌ์ฉ ๊ฐ๋ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ฅ์น ์ค์ | |
self.device = get_device() | |
self.offload = False | |
self.model_name = 'flux-dev' | |
# ๋ชจ๋ธ ๋ก๋ ์๋ | |
try: | |
self.model, self.ae, self.t5, self.clip_model = get_models( | |
self.model_name, | |
device=self.device, | |
offload=self.offload, | |
) | |
self.pulid_model = PuLIDPipeline( | |
self.model, | |
'cuda' if torch.cuda.is_available() else 'cpu', | |
weight_dtype=torch.bfloat16 if self.device.type == 'cuda' else torch.float32 | |
) | |
self.pulid_model.load_pretrain() | |
self.initialized = True | |
except Exception as e: | |
print(f"๋ชจ๋ธ ์ด๊ธฐํ ์ค ์ค๋ฅ ๋ฐ์: {e}") | |
self.initialized = False | |
# ๋ชจ๋ธ ์ด๊ธฐํ ์๋ | |
try: | |
flux_generator = FluxGenerator() | |
model_initialized = flux_generator.initialized | |
except Exception as e: | |
print(f"FluxGenerator ์ด๊ธฐํ ์ค ์ค๋ฅ ๋ฐ์: {e}") | |
model_initialized = False | |
def generate_image( | |
prompt: str, | |
id_image = None, | |
width: int = 512, | |
height: int = 512, | |
num_steps: int = 20, | |
start_step: int = 0, | |
guidance: float = 4.0, | |
seed: int = -1, | |
id_weight: float = 1.0, | |
neg_prompt: str = "", | |
true_cfg: float = 1.0, | |
timestep_to_start_cfg: int = 1, | |
max_sequence_length: int = 128, | |
gamma: float = 0.5, | |
eta: float = 0.7, | |
s: float = 0, | |
tau: float = 5, | |
): | |
# ๋ชจ๋ธ์ด ์ด๊ธฐํ๋์ง ์์์ผ๋ฉด ์ค๋ฅ ๋ฉ์์ง ๋ฐํ | |
if not model_initialized: | |
return None, "GPU ์ค๋ฅ: CUDA GPU๋ฅผ ์ฐพ์ ์ ์์ด ๋ชจ๋ธ์ ์ด๊ธฐํํ ์ ์์ต๋๋ค.", None | |
# ID ์ด๋ฏธ์ง๊ฐ ์์ผ๋ฉด ์คํ ๋ถ๊ฐ | |
if id_image is None: | |
return None, "์ค๋ฅ: ID ์ด๋ฏธ์ง๊ฐ ํ์ํฉ๋๋ค.", None | |
try: | |
flux_generator.t5.max_length = max_sequence_length | |
# ์๋ ์ค์ | |
seed = int(seed) | |
if seed == -1: | |
seed = None | |
opts = SamplingOptions( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_steps=num_steps, | |
guidance=guidance, | |
seed=seed, | |
) | |
if opts.seed is None: | |
opts.seed = torch.Generator(device="cpu").seed() | |
seed_everything(opts.seed) | |
print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...") | |
t0 = time.perf_counter() | |
use_true_cfg = abs(true_cfg - 1.0) > 1e-6 | |
# 1) ์ ๋ ฅ ๋ ธ์ด์ฆ ์ค๋น | |
noise = get_noise( | |
num_samples=1, | |
height=opts.height, | |
width=opts.width, | |
device=flux_generator.device, | |
dtype=torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32, | |
seed=opts.seed, | |
) | |
bs, c, h, w = noise.shape | |
noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
if noise.shape[0] == 1 and bs > 1: | |
noise = repeat(noise, "1 ... -> bs ...", bs=bs) | |
# ID ์ด๋ฏธ์ง ์ธ์ฝ๋ฉ | |
encode_t0 = time.perf_counter() | |
id_image = id_image.resize((opts.width, opts.height), resample=Image.LANCZOS) | |
x = torch.from_numpy(np.array(id_image).astype(np.float32)) | |
x = (x / 127.5) - 1.0 | |
x = rearrange(x, "h w c -> 1 c h w") | |
x = x.to(flux_generator.device) | |
dtype = torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32 | |
with torch.autocast(device_type=flux_generator.device.type, dtype=dtype): | |
x = flux_generator.ae.encode(x) | |
x = x.to(dtype) | |
encode_t1 = time.perf_counter() | |
print(f"Encoded in {encode_t1 - encode_t0:.2f} seconds.") | |
timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False) | |
# 2) ํ ์คํธ ์๋ฒ ๋ฉ ์ค๋น | |
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=opts.prompt) | |
inp_inversion = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt="") | |
inp_neg = None | |
if use_true_cfg: | |
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=neg_prompt) | |
# 3) ID ์๋ฒ ๋ฉ ์์ฑ | |
id_embeddings = None | |
uncond_id_embeddings = None | |
if id_image is not None: | |
id_image = np.array(id_image) | |
id_image = resize_numpy_image_long(id_image, 1024) | |
id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg) | |
y_0 = inp["img"].clone().detach() | |
# ์ด๋ฏธ์ง ์ฒ๋ฆฌ ๊ณผ์ | |
inverted = rf_inversion( | |
flux_generator.model, | |
**inp_inversion, | |
timesteps=timesteps, | |
guidance=opts.guidance, | |
id=id_embeddings, | |
id_weight=id_weight, | |
start_step=start_step, | |
uncond_id=uncond_id_embeddings, | |
true_cfg=true_cfg, | |
timestep_to_start_cfg=timestep_to_start_cfg, | |
neg_txt=inp_neg["txt"] if use_true_cfg else None, | |
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, | |
neg_vec=inp_neg["vec"] if use_true_cfg else None, | |
aggressive_offload=False, | |
y_1=noise, | |
gamma=gamma | |
) | |
inp["img"] = inverted | |
inp_inversion["img"] = inverted | |
edited = rf_denoise( | |
flux_generator.model, | |
**inp, | |
timesteps=timesteps, | |
guidance=opts.guidance, | |
id=id_embeddings, | |
id_weight=id_weight, | |
start_step=start_step, | |
uncond_id=uncond_id_embeddings, | |
true_cfg=true_cfg, | |
timestep_to_start_cfg=timestep_to_start_cfg, | |
neg_txt=inp_neg["txt"] if use_true_cfg else None, | |
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, | |
neg_vec=inp_neg["vec"] if use_true_cfg else None, | |
aggressive_offload=False, | |
y_0=y_0, | |
eta=eta, | |
s=s, | |
tau=tau, | |
) | |
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ๋์ฝ๋ฉ | |
edited = unpack(edited.float(), opts.height, opts.width) | |
with torch.autocast(device_type=flux_generator.device.type, dtype=dtype): | |
edited = flux_generator.ae.decode(edited) | |
t1 = time.perf_counter() | |
print(f"Done in {t1 - t0:.2f} seconds.") | |
# PIL ์ด๋ฏธ์ง๋ก ๋ณํ | |
edited = edited.clamp(-1, 1) | |
edited = rearrange(edited[0], "c h w -> h w c") | |
edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy()) | |
return edited, str(opts.seed), flux_generator.pulid_model.debug_img_list | |
except Exception as e: | |
import traceback | |
error_msg = f"์ด๋ฏธ์ง ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}\n{traceback.format_exc()}" | |
print(error_msg) | |
return None, error_msg, None | |
def create_demo(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# PuLID: ์ธ๋ฌผ ์ด๋ฏธ์ง ๋ณํ ๋๊ตฌ") | |
if not model_initialized: | |
gr.Markdown("## โ ๏ธ ์ค๋ฅ: CUDA GPU๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค") | |
gr.Markdown("์ด ์์ฉ ํ๋ก๊ทธ๋จ์ CUDA ์ง์ GPU๊ฐ ํ์ํฉ๋๋ค. CPU์์๋ ์คํํ ์ ์์ต๋๋ค.") | |
return demo | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="ํ๋กฌํํธ", value="portrait, color, cinematic") | |
id_image = gr.Image(label="ID ์ด๋ฏธ์ง", type="pil") | |
id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="ID ๊ฐ์ค์น") | |
num_steps = gr.Slider(1, 24, 16, step=1, label="๋จ๊ณ ์") | |
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="๊ฐ์ด๋์ค") | |
with gr.Accordion("๊ณ ๊ธ ์ต์ ", open=False): | |
neg_prompt = gr.Textbox(label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ", value="") | |
true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="CFG ์ค์ผ์ผ") | |
seed = gr.Textbox(-1, label="์๋ (-1: ๋๋ค)") | |
gr.Markdown("### ๊ธฐํ ์ต์ ") | |
gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="๊ฐ๋ง") | |
eta = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="์ํ") | |
generate_btn = gr.Button("์ด๋ฏธ์ง ์์ฑ") | |
with gr.Column(): | |
output_image = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง") | |
seed_output = gr.Textbox(label="๊ฒฐ๊ณผ/์ค๋ฅ ๋ฉ์์ง") | |
gr.Markdown(_CITE_) | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt, id_image, 512, 512, num_steps, 0, guidance, seed, id_weight, neg_prompt, | |
true_cfg, 1, 128, gamma, eta, 0, 5], | |
outputs=[output_image, seed_output], | |
) | |
return demo | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev") | |
parser.add_argument('--version', type=str, default='v0.9.1') | |
parser.add_argument("--name", type=str, default="flux-dev") | |
parser.add_argument("--port", type=int, default=8080) | |
args = parser.parse_args() | |
demo = create_demo() | |
demo.launch(ssr_mode=False) |