voice-trans / app.py
openfree's picture
Update app.py
6155bae verified
raw
history blame
10.8 kB
import gradio as gr
import openai
from openai import OpenAI
import numpy as np
import threading
import queue
import time
import json
import websocket
import base64
import pyaudio
import wave
import io
from typing import Generator, Tuple
import asyncio
import edge_tts
# OpenAI API ํ‚ค ์„ค์ •
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
class RealtimeTranslator:
def __init__(self):
self.is_recording = False
self.audio_queue = queue.Queue()
self.text_queue = queue.Queue()
self.translation_queue = queue.Queue()
self.current_text = ""
self.detected_language = None
def detect_language(self, text: str) -> str:
"""ํ…์ŠคํŠธ์˜ ์–ธ์–ด๋ฅผ ๊ฐ์ง€ํ•ฉ๋‹ˆ๋‹ค."""
korean_chars = sum(1 for char in text if ord('๊ฐ€') <= ord(char) <= ord('ํžฃ'))
total_chars = len(text.replace(" ", ""))
if total_chars > 0:
korean_ratio = korean_chars / total_chars
if korean_ratio > 0.3:
return "ko"
return "en"
def process_audio_chunk(self, audio_chunk):
"""์˜ค๋””์˜ค ์ฒญํฌ๋ฅผ ์ฒ˜๋ฆฌํ•˜์—ฌ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜"""
try:
# ์˜ค๋””์˜ค ์ฒญํฌ๋ฅผ ์ž„์‹œ ํŒŒ์ผ๋กœ ์ €์žฅ
import tempfile
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
# WAV ํŒŒ์ผ๋กœ ์ €์žฅ
import wave
with wave.open(tmp_file.name, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(16000)
wav_file.writeframes(audio_chunk)
# Whisper API ํ˜ธ์ถœ
with open(tmp_file.name, "rb") as audio_file:
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
language=None,
prompt="์‹ค์‹œ๊ฐ„ ๋Œ€ํ™”๋ฅผ ๋ฒˆ์—ญํ•ฉ๋‹ˆ๋‹ค."
)
return transcript.text
except Exception as e:
print(f"์Œ์„ฑ ์ธ์‹ ์˜ค๋ฅ˜: {e}")
return ""
def translate_stream(self, text: str, source_lang: str) -> str:
"""ํ…์ŠคํŠธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฒˆ์—ญ"""
try:
if not text or text.strip() == "":
return ""
# ๋ฒˆ์—ญ ํ”„๋กฌํ”„ํŠธ
if source_lang == "ko":
messages = [
{"role": "system", "content": "์‹ค์‹œ๊ฐ„ ํ†ต์—ญ์‚ฌ์ž…๋‹ˆ๋‹ค. ํ•œ๊ตญ์–ด๋ฅผ ์˜์–ด๋กœ ์ฆ‰์‹œ ๋ฒˆ์—ญํ•ฉ๋‹ˆ๋‹ค."},
{"role": "user", "content": text}
]
else:
messages = [
{"role": "system", "content": "์‹ค์‹œ๊ฐ„ ํ†ต์—ญ์‚ฌ์ž…๋‹ˆ๋‹ค. ์˜์–ด๋ฅผ ํ•œ๊ตญ์–ด๋กœ ์ฆ‰์‹œ ๋ฒˆ์—ญํ•ฉ๋‹ˆ๋‹ค."},
{"role": "user", "content": text}
]
# ์ŠคํŠธ๋ฆฌ๋ฐ ์‘๋‹ต
stream = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
stream=True,
temperature=0.3,
max_tokens=150
)
translated = ""
for chunk in stream:
if chunk.choices[0].delta.content:
translated += chunk.choices[0].delta.content
return translated
except Exception as e:
print(f"๋ฒˆ์—ญ ์˜ค๋ฅ˜: {e}")
return ""
translator = RealtimeTranslator()
def process_stream(audio_stream):
"""์˜ค๋””์˜ค ์ŠคํŠธ๋ฆผ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฒ˜๋ฆฌ"""
if audio_stream is None:
yield "๐Ÿ”ด ๋งˆ์ดํฌ๋ฅผ ์ผœ๊ณ  ๋ง์”€ํ•ด์ฃผ์„ธ์š”", "", ""
return
sample_rate, audio_data = audio_stream
# ์˜ค๋””์˜ค ๋ฐ์ดํ„ฐ๊ฐ€ ๋„ˆ๋ฌด ์งง์œผ๋ฉด ๋ฌด์‹œ
if len(audio_data) < sample_rate * 0.5: # 0.5์ดˆ ๋ฏธ๋งŒ
yield "๐ŸŽค ๋“ฃ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค...", "", ""
return
# ์˜ค๋””์˜ค ์ฒญํฌ ์ฒ˜๋ฆฌ
audio_bytes = audio_data.tobytes()
# ์Œ์„ฑ์„ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜
text = translator.process_audio_chunk(audio_bytes)
if text:
# ์–ธ์–ด ๊ฐ์ง€
detected_lang = translator.detect_language(text)
# ์‹ค์‹œ๊ฐ„ ๋ฒˆ์—ญ
translated = translator.translate_stream(text, detected_lang)
# ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
if detected_lang == "ko":
yield f"โœ… ํ•œ๊ตญ์–ด ๊ฐ์ง€", text, translated
else:
yield f"โœ… English detected", translated, text
def create_realtime_interface():
with gr.Blocks(title="์‹ค์‹œ๊ฐ„ ์Œ์„ฑ ๋ฒˆ์—ญ๊ธฐ", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# ๐ŸŽค ์‹ค์‹œ๊ฐ„ ์Œ์„ฑ ๋ฒˆ์—ญ๊ธฐ (Real-time Voice Translator)
### ๋งํ•˜๋Š” ๋™์•ˆ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฒˆ์—ญ๋ฉ๋‹ˆ๋‹ค!
๐Ÿ”ด **์‹œ์ž‘** ๋ฒ„ํŠผ์„ ๋ˆ„๋ฅด๊ณ  ๋งํ•˜๋ฉด, ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฒˆ์—ญ์ด ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.
---
"""
)
with gr.Row():
with gr.Column(scale=2):
audio_input = gr.Audio(
source="microphone",
type="numpy",
streaming=True, # ์ŠคํŠธ๋ฆฌ๋ฐ ๋ชจ๋“œ ํ™œ์„ฑํ™”
label="๐ŸŽค ์‹ค์‹œ๊ฐ„ ๋งˆ์ดํฌ ์ž…๋ ฅ",
elem_id="audio-stream"
)
with gr.Column(scale=1):
status_text = gr.Textbox(
label="๐Ÿ“Š ์ƒํƒœ",
value="๐Ÿ”ด ๋งˆ์ดํฌ๋ฅผ ์ผœ๊ณ  ๋ง์”€ํ•ด์ฃผ์„ธ์š”",
interactive=False
)
with gr.Row():
with gr.Column():
korean_output = gr.Textbox(
label="๐Ÿ‡ฐ๐Ÿ‡ท ํ•œ๊ตญ์–ด",
placeholder="ํ•œ๊ตญ์–ด๊ฐ€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค",
lines=8,
interactive=False,
elem_id="korean-text"
)
with gr.Column():
english_output = gr.Textbox(
label="๐Ÿ‡บ๐Ÿ‡ธ English",
placeholder="English translation appears here in real-time",
lines=8,
interactive=False,
elem_id="english-text"
)
# ์ŠคํŠธ๋ฆฌ๋ฐ ์ด๋ฒคํŠธ ์„ค์ •
audio_input.stream(
fn=process_stream,
inputs=[audio_input],
outputs=[status_text, korean_output, english_output],
show_progress=False
)
gr.Markdown(
"""
---
### ๐Ÿ’ก ์‚ฌ์šฉ ํŒ:
- ๋ช…ํ™•ํ•˜๊ฒŒ ๋งํ• ์ˆ˜๋ก ์ธ์‹๋ฅ ์ด ๋†’์•„์ง‘๋‹ˆ๋‹ค
- ๋ฌธ์žฅ์ด ๋๋‚  ๋•Œ๊นŒ์ง€ ์ž ์‹œ ๋ฉˆ์ถ”๋ฉด ๋” ์ •ํ™•ํ•œ ๋ฒˆ์—ญ์ด ๋ฉ๋‹ˆ๋‹ค
- ํ•œ๊ตญ์–ด์™€ ์˜์–ด๋ฅผ ์ž๋™์œผ๋กœ ๊ฐ์ง€ํ•ฉ๋‹ˆ๋‹ค
### โš™๏ธ ๊ธฐ์ˆ  ์‚ฌ์–‘:
- **์Œ์„ฑ ์ธ์‹**: OpenAI Whisper (์‹ค์‹œ๊ฐ„ ์ŠคํŠธ๋ฆฌ๋ฐ)
- **๋ฒˆ์—ญ**: GPT-4 (์ŠคํŠธ๋ฆฌ๋ฐ ๋ชจ๋“œ)
- **์ง€์—ฐ ์‹œ๊ฐ„**: ~1-2์ดˆ
"""
)
# CSS ์Šคํƒ€์ผ ์ถ”๊ฐ€
demo.css = """
#audio-stream {
height: 150px !important;
}
#korean-text, #english-text {
font-size: 18px !important;
line-height: 1.5 !important;
}
.gradio-container {
max-width: 1200px !important;
}
"""
return demo
# ๋Œ€์•ˆ: WebSocket ๊ธฐ๋ฐ˜ ์‹ค์‹œ๊ฐ„ ๋ฒˆ์—ญ (๋” ๋‚ฎ์€ ์ง€์—ฐ์‹œ๊ฐ„)
class WebSocketTranslator:
def __init__(self):
self.ws_url = "wss://api.openai.com/v1/realtime" # ์˜ˆ์‹œ URL
self.ws = None
self.is_connected = False
def connect(self):
"""WebSocket ์—ฐ๊ฒฐ"""
headers = {
"Authorization": f"Bearer {OPENAI_API_KEY}",
"OpenAI-Beta": "realtime=v1"
}
try:
self.ws = websocket.WebSocketApp(
self.ws_url,
header=headers,
on_open=self.on_open,
on_message=self.on_message,
on_error=self.on_error,
on_close=self.on_close
)
# ๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ ์‹คํ–‰
wst = threading.Thread(target=self.ws.run_forever)
wst.daemon = True
wst.start()
except Exception as e:
print(f"WebSocket ์—ฐ๊ฒฐ ์˜ค๋ฅ˜: {e}")
def on_open(self, ws):
self.is_connected = True
print("WebSocket ์—ฐ๊ฒฐ๋จ")
def on_message(self, ws, message):
"""๋ฉ”์‹œ์ง€ ์ˆ˜์‹  ์ฒ˜๋ฆฌ"""
try:
data = json.loads(message)
if data.get("type") == "transcription":
# ์‹ค์‹œ๊ฐ„ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ
text = data.get("text", "")
self.process_realtime_text(text)
except Exception as e:
print(f"๋ฉ”์‹œ์ง€ ์ฒ˜๋ฆฌ ์˜ค๋ฅ˜: {e}")
def on_error(self, ws, error):
print(f"WebSocket ์˜ค๋ฅ˜: {error}")
def on_close(self, ws, close_status_code, close_msg):
self.is_connected = False
print("WebSocket ์—ฐ๊ฒฐ ์ข…๋ฃŒ")
def send_audio(self, audio_data):
"""์˜ค๋””์˜ค ๋ฐ์ดํ„ฐ ์ „์†ก"""
if self.is_connected and self.ws:
# ์˜ค๋””์˜ค๋ฅผ base64๋กœ ์ธ์ฝ”๋”ฉ
audio_base64 = base64.b64encode(audio_data).decode('utf-8')
message = {
"type": "audio",
"audio": audio_base64
}
self.ws.send(json.dumps(message))
def process_realtime_text(self, text):
"""์‹ค์‹œ๊ฐ„ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ๋ฐ ๋ฒˆ์—ญ"""
# ์–ธ์–ด ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ ๋กœ์ง
pass
# ๋ฉ”์ธ ์‹คํ–‰
if __name__ == "__main__":
import os
# API ํ‚ค ํ™•์ธ
if OPENAI_API_KEY == "your-api-key-here":
api_key = os.getenv("OPENAI_API_KEY")
if api_key:
OPENAI_API_KEY = api_key
client = OpenAI(api_key=OPENAI_API_KEY)
else:
print("โš ๏ธ ๊ฒฝ๊ณ : OpenAI API ํ‚ค๋ฅผ ์„ค์ •ํ•ด์ฃผ์„ธ์š”!")
print("ํ™˜๊ฒฝ ๋ณ€์ˆ˜ OPENAI_API_KEY๋ฅผ ์„ค์ •ํ•˜๊ฑฐ๋‚˜ ์ฝ”๋“œ์— ์ง์ ‘ ์ž…๋ ฅํ•˜์„ธ์š”.")
# Gradio ์•ฑ ์‹คํ–‰
demo = create_realtime_interface()
demo.queue() # ํ ํ™œ์„ฑํ™” (์ŠคํŠธ๋ฆฌ๋ฐ์— ํ•„์š”)
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
debug=True
)