File size: 7,695 Bytes
22e2ace 0d7c0a3 d1b2128 0d7c0a3 afd80fc 22e2ace 0d7c0a3 3cad491 0d7c0a3 7143888 afd80fc 9279bb0 a6cdcf6 c9b4e47 a6cdcf6 c9b4e47 afd80fc 05aa177 9279bb0 afd80fc 0d7c0a3 7143888 930e925 889e7e2 0d7c0a3 889e7e2 0d7c0a3 889e7e2 0d7c0a3 930e925 3cad491 0d7c0a3 c9b4e47 0d7c0a3 7143888 0d7c0a3 7143888 0d7c0a3 c9b4e47 0d7c0a3 889e7e2 0d7c0a3 afd80fc c9b4e47 3205cb6 afd80fc 930e925 c9b4e47 dd403f4 c9b4e47 0d7c0a3 3cad491 fe6e529 3cad491 fe6e529 930e925 0d7c0a3 c9b4e47 0d7c0a3 afd80fc 9279bb0 afd80fc 0d7c0a3 c9b4e47 0d7c0a3 c9b4e47 0d7c0a3 afd80fc c9b4e47 7143888 9279bb0 9c4c9fa 0d7c0a3 c9b4e47 3205cb6 d1b2128 a2da9cb 0d7c0a3 c9b4e47 0d7c0a3 afd80fc 0d7c0a3 7143888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import json
import librosa
import os
import soundfile as sf
import tempfile
import uuid
import transformers
import torch
import time
from nemo.collections.asr.models import ASRModel
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
SAMPLE_RATE = 16000 # Hz
MAX_AUDIO_SECONDS = 40 # wont try to transcribe if longer than this
DESCRIPTION = '''
<div>
<h1 style='text-align: center'>MyAlexa: Voice Chat Assistant</h1>
<p style='text-align: center'>MyAlexa is a demo of a voice chat assistant with chat logs that accepts audio input and outputs an AI response. </p>
<p>This space uses <a href="https://huggingface.co/nvidia/canary-1b"><b>NVIDIA Canary 1B</b></a> for Automatic Speech-to-text Recognition (ASR), <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama 3 8B Insruct</b></a> for the large language model (LLM) and <a href="https://https://huggingface.co/docs/transformers/en/model_doc/vits"><b>VITS</b></a> for text to speech (TTS).</p>
<p>This demo accepts audio inputs not more than 40 seconds long.</p>
<p>Transcription and responses are limited to the English language.</p>
</div>
'''
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://i.ibb.co/S35q17Q/My-Alexa-Logo.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<p style="font-size: 28px; margin-bottom: 2px; opacity: 0.65;">What's on your mind?</p>
</div>
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
### ASR model
canary_model = ASRModel.from_pretrained("nvidia/canary-1b").to(device)
canary_model.eval()
# make sure beam size always 1 for consistency
canary_model.change_decoding_strategy(None)
decoding_cfg = canary_model.cfg.decoding
decoding_cfg.beam.beam_size = 1
canary_model.change_decoding_strategy(decoding_cfg)
### LLM model
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
llama3_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
def convert_audio(audio_filepath, tmpdir, utt_id):
"""
Convert all files to monochannel 16 kHz wav files.
Do not convert and raise error if audio is too long.
Returns output filename and duration.
"""
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
duration = librosa.get_duration(y=data, sr=sr)
if duration > MAX_AUDIO_SECONDS:
raise gr.Error(
f"This demo can transcribe up to {MAX_AUDIO_SECONDS} seconds of audio. "
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
"(click on the scissors icon to start trimming audio)."
)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
out_filename = os.path.join(tmpdir, utt_id + '.wav')
# save output audio
sf.write(out_filename, data, SAMPLE_RATE)
return out_filename, duration
def transcribe(audio_filepath):
"""
Transcribes a converted audio file.
Set to english language with punctuations.
Returns the output text.
"""
if audio_filepath is None:
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
# make manifest file and save
manifest_data = {
"audio_filepath": converted_audio_filepath,
"source_lang": "en",
"target_lang": "en",
"taskname": "asr",
"pnc": "yes",
"answer": "predict",
"duration": str(duration),
}
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
with open(manifest_filepath, 'w') as fout:
line = json.dumps(manifest_data)
fout.write(line + '\n')
# call transcribe, passing in manifest filepath
output_text = canary_model.transcribe(manifest_filepath)[0]
return output_text
def add_message(history, message):
"""
Adds the input message in the chatbot.
Returns the updated chatbot with an empty input textbox.
"""
history.append((message, None))
return history
def bot(history,message):
"""
Prints the LLM's response in the chatbot
"""
response = bot_response(message, history, 0.7, 100)
#response = "bot_response(message)"
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def bot_response(message: str,
history: list,
temperature: float,
max_new_tokens: int
)
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(llama3_model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=llama3_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
return "".join(outputs)
with gr.Blocks(
title="MyAlexa",
css="""
textarea { font-size: 18px;}
""",
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
) as demo:
gr.HTML(DESCRIPTION)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
placeholder=PLACEHOLDER,
label='MyAlexa'
)
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"
)
audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")
with gr.Column():
gr.HTML("<p><b>Step 2:</b> Enter audio as input and wait for MyAlexa's response.</p>")
submit_button = gr.Button(
value="Submit audio",
variant="primary"
)
chat_input = gr.Textbox(
label="Transcribed text:",
interactive=False,
placeholder="Enter message",
elem_id="chat_input",
visible=True
)
chat_msg = chat_input.change(add_message, [chatbot, chat_input], [chatbot])
bot_msg = chat_msg.then(bot, [chatbot, chat_input], chatbot, api_name="bot_response")
# bot_msg.then(lambda: gr.Textbox(interactive=False), None, [chat_input])
submit_button.click(
fn=transcribe,
inputs = [audio_file],
outputs = [chat_input]
)
demo.queue()
if __name__ == "__main__":
demo.launch() |