Spaces:
Sleeping
Sleeping
File size: 14,851 Bytes
d5e5728 4c119c3 58c11f3 d5e5728 d61d482 d5e5728 4c119c3 d5e5728 4c119c3 d5e5728 4c119c3 a4cf41d 4c119c3 06a1915 a4cf41d 4c119c3 190a6d4 4c119c3 06a1915 a4cf41d 4c119c3 a4cf41d 4c119c3 a4cf41d 4c119c3 a4cf41d 4c119c3 a4cf41d 190a6d4 a4cf41d 4c119c3 a4cf41d 190a6d4 4c119c3 190a6d4 06a1915 190a6d4 152d6f3 4c119c3 47535f8 49fdbe4 47535f8 152d6f3 47535f8 49fdbe4 348ce33 58c11f3 152d6f3 4c119c3 47535f8 3886050 47535f8 3886050 47535f8 152d6f3 47535f8 152d6f3 3886050 47535f8 4c119c3 47535f8 4c119c3 152d6f3 47535f8 58c11f3 47535f8 542a20e 47535f8 d5e5728 190a6d4 06a1915 190a6d4 10ba1e7 190a6d4 10ba1e7 190a6d4 06a1915 10ba1e7 06a1915 10ba1e7 190a6d4 06a1915 10ba1e7 06a1915 190a6d4 d5e5728 7e40ae4 4c119c3 d61d482 4c119c3 47535f8 4c119c3 190a6d4 4c119c3 190a6d4 4c119c3 190a6d4 4c119c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback
import cv2 # Added for bilateral filtering
# Constants
IMG_SIZE = 128
TIMESTEPS = 300 # From second code
NUM_CLASSES = 2
# Global Cancellation Flag
cancel_event = Event()
# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Model Definitions ---
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
half_dim = dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim) * -emb) # From second code (no dtype specified)
self.register_buffer('embeddings', emb)
def forward(self, time):
device = time.device # From second code
embeddings = self.embeddings.to(device)
embeddings = time[:, None] * embeddings[None, :] # From second code
return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
super().__init__()
self.num_classes = num_classes
self.label_embedding = nn.Embedding(num_classes, time_dim)
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(time_dim),
nn.Linear(time_dim, time_dim),
nn.ReLU(),
nn.Linear(time_dim, time_dim)
)
# Encoder
self.inc = self.double_conv(in_channels, 64)
self.down1 = self.down(64 + time_dim * 2, 128)
self.down2 = self.down(128 + time_dim * 2, 256)
self.down3 = self.down(256 + time_dim * 2, 512)
# Bottleneck
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
# Decoder
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)
self.outc = nn.Conv2d(64, out_channels, kernel_size=1)
def double_conv(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def down(self, in_channels, out_channels):
return nn.Sequential(
nn.MaxPool2d(2),
self.double_conv(in_channels, out_channels)
)
def forward(self, x, labels, time):
label_indices = torch.argmax(labels, dim=1)
label_emb = self.label_embedding(label_indices)
t_emb = self.time_mlp(time)
combined_emb = torch.cat([t_emb, label_emb], dim=1)
combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)
x1 = self.inc(x)
x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)
x2 = self.down1(x1_cat)
x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)
x3 = self.down2(x2_cat)
x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)
x4 = self.down3(x3_cat)
x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)
x5 = self.bottleneck(x4_cat)
x = self.up1(x5)
x = torch.cat([x, x3], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv1(x)
x = self.up2(x)
x = torch.cat([x, x2], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv2(x)
x = self.up3(x)
x = torch.cat([x, x1], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv3(x)
return self.outc(x)
class DiffusionModel(nn.Module):
def __init__(self, model, timesteps=TIMESTEPS, time_dim=256):
super().__init__()
self.model = model
self.timesteps = timesteps
self.time_dim = time_dim
# Linear beta schedule with scaling from second code
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
self.alphas = 1. - self.betas
self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0).float())
def forward_diffusion(self, x_0, t, noise):
x_0 = x_0.float()
noise = noise.float()
alpha_bar_t = self.alpha_bars[t].view(-1, 1, 1, 1)
x_t = torch.sqrt(alpha_bar_t) * x_0 + torch.sqrt(1. - alpha_bar_t) * noise
return x_t
def forward(self, x_0, labels):
t = torch.randint(0, self.timesteps, (x_0.shape[0],), device=x_0.device).long()
noise = torch.randn_like(x_0)
x_t = self.forward_diffusion(x_0, t, noise)
predicted_noise = self.model(x_t, labels, t.float())
return predicted_noise, noise, t
@torch.no_grad()
def sample(self, num_images, img_size, num_classes, labels, device, progress_callback=None):
# Start with random noise
x_t = torch.randn(num_images, 3, img_size, img_size).to(device)
# Label handling (one-hot if needed)
if labels.ndim == 1:
labels_one_hot = torch.zeros(num_images, num_classes).to(device)
labels_one_hot[torch.arange(num_images), labels] = 1
labels = labels_one_hot
else:
labels = labels.to(device)
# REVERTED SAMPLING LOOP WITH NOISE REDUCTION
for t in reversed(range(self.timesteps)):
if cancel_event.is_set():
return None
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float)
predicted_noise = self.model(x_t, labels, t_tensor)
# Calculate coefficients
beta_t = self.betas[t].to(device)
alpha_t = self.alphas[t].to(device)
alpha_bar_t = self.alpha_bars[t].to(device)
mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
variance = beta_t
# Reduced noise injection with lower multiplier
if t > 0:
noise = torch.randn_like(x_t) * 0.8 # Reduced noise by 20%
else:
noise = torch.zeros_like(x_t)
x_t = mean + torch.sqrt(variance) * noise
if progress_callback:
progress_callback((self.timesteps - t) / self.timesteps)
# Clamp and denormalize
x_0 = torch.clamp(x_t, -1., 1.)
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
x_0 = std * x_0 + mean
x_0 = torch.clamp(x_0, 0., 1.)
# ENHANCED SHARPENING
# First apply mild bilateral filtering to reduce noise while preserving edges
x_np = x_0.cpu().permute(0, 2, 3, 1).numpy()
filtered = []
for img in x_np:
img = (img * 255).astype(np.uint8)
filtered_img = cv2.bilateralFilter(img, d=5, sigmaColor=15, sigmaSpace=15)
filtered.append(filtered_img / 255.0)
x_0 = torch.tensor(np.array(filtered), device=device).permute(0, 3, 1, 2)
# Then apply stronger unsharp masking
kernel = torch.ones(3, 1, 5, 5, device=device) / 75
kernel = kernel.to(x_0.dtype)
blurred = torch.nn.functional.conv2d(
x_0,
kernel,
padding=2,
groups=3
)
x_0 = torch.clamp(1.5 * x_0 - 0.5 * blurred, 0., 1.) # Increased sharpening factor
return x_0
def load_model(model_path, device):
unet_model = UNet(num_classes=NUM_CLASSES).to(device)
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location=device)
if 'model_state_dict' in checkpoint:
# Handle training checkpoint format
state_dict = {
k[6:]: v for k, v in checkpoint['model_state_dict'].items()
if k.startswith('model.')
}
# Load UNet weights
unet_model.load_state_dict(state_dict, strict=False)
# Initialize diffusion model with loaded UNet
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
print(f"Loaded UNet weights from {model_path}")
else:
# Handle direct model weights format
try:
# First try loading full DiffusionModel
diffusion_model.load_state_dict(checkpoint)
print(f"Loaded full DiffusionModel from {model_path}")
except RuntimeError:
# If that fails, load just the UNet weights
unet_model.load_state_dict(checkpoint, strict=False)
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
print(f"Loaded UNet weights only from {model_path}")
else:
print(f"Weights file not found at {model_path}")
print("Using randomly initialized weights")
diffusion_model.eval()
return diffusion_model
def cancel_generation():
cancel_event.set()
return "Generation cancelled"
def generate_images(label_str, num_images, progress=gr.Progress()):
global loaded_model
cancel_event.clear()
if num_images < 1 or num_images > 10:
raise gr.Error("Number of images must be between 1 and 10")
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
if label_str not in label_map:
raise gr.Error("Invalid condition selected")
labels = torch.zeros(num_images, NUM_CLASSES)
labels[:, label_map[label_str]] = 1
try:
def progress_callback(progress_val):
progress(progress_val, desc="Generating...")
if cancel_event.is_set():
raise gr.Error("Generation was cancelled by user")
with torch.no_grad():
images = loaded_model.sample(
num_images=num_images,
img_size=IMG_SIZE,
num_classes=NUM_CLASSES,
labels=labels,
device=device,
progress_callback=progress_callback
)
if images is None:
return None, None
processed_images = []
for img in images:
img_np = img.cpu().permute(1, 2, 0).numpy()
img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
pil_img = Image.fromarray(img_np)
processed_images.append(pil_img)
if num_images == 1:
return processed_images[0], processed_images
else:
return None, processed_images
except Exception as e:
traceback.print_exc()
raise gr.Error(f"Generation failed: {str(e)}")
finally:
torch.cuda.empty_cache()
# Load model
MODEL_NAME = "model_weights.pth"
model_path = MODEL_NAME
print("Loading model...")
try:
loaded_model = load_model(model_path, device)
print("Model loaded successfully!")
except Exception as e:
print(f"Failed to load model: {e}")
print("Creating dummy model for demonstration")
loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES), timesteps=TIMESTEPS).to(device)
# Gradio UI (from first code)
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="violet",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Poppins")],
text_size="md"
)) as demo:
gr.Markdown("""
<center>
<h1>Synthetic X-ray Generator</h1>
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
</center>
""")
with gr.Row():
with gr.Column(scale=1):
condition = gr.Dropdown(
["Pneumonia", "Pneumothorax"],
label="Select Condition",
value="Pneumonia",
interactive=True
)
num_images = gr.Slider(
1, 10, value=1, step=1,
label="Number of Images",
interactive=True
)
with gr.Row():
submit_btn = gr.Button("Generate", variant="primary")
cancel_btn = gr.Button("Cancel", variant="stop")
gr.Markdown("""
<div style="text-align: center; margin-top: 10px;">
<small>Note: Generation may take several seconds per image</small>
</div>
""")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Output", id="output_tab"):
single_image = gr.Image(
label="Generated X-ray",
height=400,
visible=True
)
gallery = gr.Gallery(
label="Generated X-rays",
columns=3,
height="auto",
object_fit="contain",
visible=False
)
def update_ui_based_on_count(num_images):
if num_images == 1:
return {
single_image: gr.update(visible=True),
gallery: gr.update(visible=False)
}
else:
return {
single_image: gr.update(visible=False),
gallery: gr.update(visible=True)
}
num_images.change(
fn=update_ui_based_on_count,
inputs=num_images,
outputs=[single_image, gallery]
)
submit_btn.click(
fn=generate_images,
inputs=[condition, num_images],
outputs=[single_image, gallery]
)
cancel_btn.click(
fn=cancel_generation,
outputs=None
)
demo.css = """
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
}
.gallery-container {
background-color: white !important;
}
"""
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |