File size: 14,851 Bytes
d5e5728
 
 
 
 
 
 
4c119c3
 
58c11f3
d5e5728
d61d482
d5e5728
4c119c3
d5e5728
 
4c119c3
 
 
 
d5e5728
 
4c119c3
a4cf41d
 
 
 
 
 
4c119c3
06a1915
a4cf41d
 
4c119c3
190a6d4
4c119c3
06a1915
a4cf41d
 
 
 
 
 
4c119c3
a4cf41d
 
 
 
 
 
 
4c119c3
a4cf41d
 
 
 
 
4c119c3
a4cf41d
 
4c119c3
a4cf41d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190a6d4
a4cf41d
 
4c119c3
a4cf41d
 
 
190a6d4
 
4c119c3
190a6d4
 
 
 
06a1915
190a6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152d6f3
 
4c119c3
47535f8
 
49fdbe4
47535f8
152d6f3
47535f8
 
 
49fdbe4
 
348ce33
58c11f3
152d6f3
4c119c3
 
 
47535f8
3886050
 
47535f8
 
 
 
3886050
47535f8
 
 
 
152d6f3
47535f8
152d6f3
 
3886050
47535f8
4c119c3
47535f8
4c119c3
152d6f3
47535f8
 
 
 
 
 
 
58c11f3
47535f8
 
 
 
 
 
 
 
542a20e
47535f8
 
 
 
 
 
 
 
 
 
 
 
 
d5e5728
190a6d4
 
 
06a1915
190a6d4
 
 
10ba1e7
190a6d4
10ba1e7
 
190a6d4
06a1915
10ba1e7
 
06a1915
10ba1e7
190a6d4
06a1915
10ba1e7
 
 
 
 
 
 
 
 
 
 
 
06a1915
190a6d4
 
 
d5e5728
 
7e40ae4
4c119c3
 
 
 
 
 
 
 
 
 
 
d61d482
 
4c119c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47535f8
4c119c3
 
 
 
 
190a6d4
4c119c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190a6d4
4c119c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190a6d4
 
4c119c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback
import cv2  # Added for bilateral filtering

# Constants
IMG_SIZE = 128
TIMESTEPS = 300  # From second code
NUM_CLASSES = 2

# Global Cancellation Flag
cancel_event = Event()

# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# --- Model Definitions ---
class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim
        half_dim = dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim) * -emb)  # From second code (no dtype specified)
        self.register_buffer('embeddings', emb)

    def forward(self, time):
        device = time.device  # From second code
        embeddings = self.embeddings.to(device)
        embeddings = time[:, None] * embeddings[None, :]  # From second code
        return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)

class UNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
        super().__init__()
        self.num_classes = num_classes
        self.label_embedding = nn.Embedding(num_classes, time_dim)

        self.time_mlp = nn.Sequential(
            SinusoidalPositionEmbeddings(time_dim),
            nn.Linear(time_dim, time_dim),
            nn.ReLU(),
            nn.Linear(time_dim, time_dim)
        )

        # Encoder
        self.inc = self.double_conv(in_channels, 64)
        self.down1 = self.down(64 + time_dim * 2, 128)
        self.down2 = self.down(128 + time_dim * 2, 256)
        self.down3 = self.down(256 + time_dim * 2, 512)

        # Bottleneck
        self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)

        # Decoder
        self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
        self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)

        self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)

        self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)

        self.outc = nn.Conv2d(64, out_channels, kernel_size=1)

    def double_conv(self, in_channels, out_channels):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True)
        )

    def down(self, in_channels, out_channels):
        return nn.Sequential(
            nn.MaxPool2d(2),
            self.double_conv(in_channels, out_channels)
        )

    def forward(self, x, labels, time):
        label_indices = torch.argmax(labels, dim=1)
        label_emb = self.label_embedding(label_indices)
        t_emb = self.time_mlp(time)

        combined_emb = torch.cat([t_emb, label_emb], dim=1)
        combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)

        x1 = self.inc(x)
        x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)

        x2 = self.down1(x1_cat)
        x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)

        x3 = self.down2(x2_cat)
        x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)

        x4 = self.down3(x3_cat)
        x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)

        x5 = self.bottleneck(x4_cat)

        x = self.up1(x5)
        x = torch.cat([x, x3], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv1(x)

        x = self.up2(x)
        x = torch.cat([x, x2], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv2(x)

        x = self.up3(x)
        x = torch.cat([x, x1], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv3(x)

        return self.outc(x)

class DiffusionModel(nn.Module):
    def __init__(self, model, timesteps=TIMESTEPS, time_dim=256):
        super().__init__()
        self.model = model
        self.timesteps = timesteps
        self.time_dim = time_dim

        # Linear beta schedule with scaling from second code
        scale = 1000 / timesteps
        beta_start = scale * 0.0001
        beta_end = scale * 0.02
        self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
        self.alphas = 1. - self.betas
        self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0).float())

    def forward_diffusion(self, x_0, t, noise):
        x_0 = x_0.float()
        noise = noise.float()
        alpha_bar_t = self.alpha_bars[t].view(-1, 1, 1, 1)
        x_t = torch.sqrt(alpha_bar_t) * x_0 + torch.sqrt(1. - alpha_bar_t) * noise
        return x_t

    def forward(self, x_0, labels):
        t = torch.randint(0, self.timesteps, (x_0.shape[0],), device=x_0.device).long()
        noise = torch.randn_like(x_0)
        x_t = self.forward_diffusion(x_0, t, noise)
        predicted_noise = self.model(x_t, labels, t.float())
        return predicted_noise, noise, t

    @torch.no_grad()
    def sample(self, num_images, img_size, num_classes, labels, device, progress_callback=None):
        # Start with random noise
        x_t = torch.randn(num_images, 3, img_size, img_size).to(device)

        # Label handling (one-hot if needed)
        if labels.ndim == 1:
            labels_one_hot = torch.zeros(num_images, num_classes).to(device)
            labels_one_hot[torch.arange(num_images), labels] = 1
            labels = labels_one_hot
        else:
            labels = labels.to(device)

        # REVERTED SAMPLING LOOP WITH NOISE REDUCTION
        for t in reversed(range(self.timesteps)):
            if cancel_event.is_set():
                return None
                
            t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float)
            predicted_noise = self.model(x_t, labels, t_tensor)

            # Calculate coefficients
            beta_t = self.betas[t].to(device)
            alpha_t = self.alphas[t].to(device)
            alpha_bar_t = self.alpha_bars[t].to(device)

            mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
            variance = beta_t

            # Reduced noise injection with lower multiplier
            if t > 0:
                noise = torch.randn_like(x_t) * 0.8  # Reduced noise by 20%
            else:
                noise = torch.zeros_like(x_t)

            x_t = mean + torch.sqrt(variance) * noise
            
            if progress_callback:
                progress_callback((self.timesteps - t) / self.timesteps)

        # Clamp and denormalize
        x_0 = torch.clamp(x_t, -1., 1.)
        mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
        std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
        x_0 = std * x_0 + mean
        x_0 = torch.clamp(x_0, 0., 1.)

        # ENHANCED SHARPENING
        # First apply mild bilateral filtering to reduce noise while preserving edges
        x_np = x_0.cpu().permute(0, 2, 3, 1).numpy()
        filtered = []
        for img in x_np:
            img = (img * 255).astype(np.uint8)
            filtered_img = cv2.bilateralFilter(img, d=5, sigmaColor=15, sigmaSpace=15)
            filtered.append(filtered_img / 255.0)
        x_0 = torch.tensor(np.array(filtered), device=device).permute(0, 3, 1, 2)
        
        # Then apply stronger unsharp masking
        kernel = torch.ones(3, 1, 5, 5, device=device) / 75
        kernel = kernel.to(x_0.dtype)
        blurred = torch.nn.functional.conv2d(
            x_0,
            kernel,
            padding=2,
            groups=3
        )
        x_0 = torch.clamp(1.5 * x_0 - 0.5 * blurred, 0., 1.)  # Increased sharpening factor

        return x_0

def load_model(model_path, device):
    unet_model = UNet(num_classes=NUM_CLASSES).to(device)
    diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)

    if os.path.exists(model_path):
        checkpoint = torch.load(model_path, map_location=device)
        
        if 'model_state_dict' in checkpoint:
            # Handle training checkpoint format
            state_dict = {
                k[6:]: v for k, v in checkpoint['model_state_dict'].items()
                if k.startswith('model.')
            }
            
            # Load UNet weights
            unet_model.load_state_dict(state_dict, strict=False)
            
            # Initialize diffusion model with loaded UNet
            diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
            
            print(f"Loaded UNet weights from {model_path}")
        else:
            # Handle direct model weights format
            try:
                # First try loading full DiffusionModel
                diffusion_model.load_state_dict(checkpoint)
                print(f"Loaded full DiffusionModel from {model_path}")
            except RuntimeError:
                # If that fails, load just the UNet weights
                unet_model.load_state_dict(checkpoint, strict=False)
                diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
                print(f"Loaded UNet weights only from {model_path}")
    else:
        print(f"Weights file not found at {model_path}")
        print("Using randomly initialized weights")

    diffusion_model.eval()
    return diffusion_model

def cancel_generation():
    cancel_event.set()
    return "Generation cancelled"

def generate_images(label_str, num_images, progress=gr.Progress()):
    global loaded_model
    cancel_event.clear()
    
    if num_images < 1 or num_images > 10:
        raise gr.Error("Number of images must be between 1 and 10")
    
    label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
    if label_str not in label_map:
        raise gr.Error("Invalid condition selected")

    labels = torch.zeros(num_images, NUM_CLASSES)
    labels[:, label_map[label_str]] = 1

    try:
        def progress_callback(progress_val):
            progress(progress_val, desc="Generating...")
            if cancel_event.is_set():
                raise gr.Error("Generation was cancelled by user")

        with torch.no_grad():
            images = loaded_model.sample(
                num_images=num_images,
                img_size=IMG_SIZE,
                num_classes=NUM_CLASSES,
                labels=labels,
                device=device,
                progress_callback=progress_callback
            )
        
        if images is None:
            return None, None
            
        processed_images = []
        for img in images:
            img_np = img.cpu().permute(1, 2, 0).numpy()
            img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
            pil_img = Image.fromarray(img_np)
            processed_images.append(pil_img)
        
        if num_images == 1:
            return processed_images[0], processed_images
        else:
            return None, processed_images

    except Exception as e:
        traceback.print_exc()
        raise gr.Error(f"Generation failed: {str(e)}")
    finally:
        torch.cuda.empty_cache()

# Load model
MODEL_NAME = "model_weights.pth"
model_path = MODEL_NAME
print("Loading model...")
try:
    loaded_model = load_model(model_path, device)
    print("Model loaded successfully!")
except Exception as e:
    print(f"Failed to load model: {e}")
    print("Creating dummy model for demonstration")
    loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES), timesteps=TIMESTEPS).to(device)

# Gradio UI (from first code)
with gr.Blocks(theme=gr.themes.Soft(
    primary_hue="violet",
    neutral_hue="slate",
    font=[gr.themes.GoogleFont("Poppins")],
    text_size="md"
)) as demo:
    gr.Markdown("""
    <center>
    <h1>Synthetic X-ray Generator</h1>
    <p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
    </center>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            condition = gr.Dropdown(
                ["Pneumonia", "Pneumothorax"],
                label="Select Condition",
                value="Pneumonia",
                interactive=True
            )
            num_images = gr.Slider(
                1, 10, value=1, step=1,
                label="Number of Images",
                interactive=True
            )
            
            with gr.Row():
                submit_btn = gr.Button("Generate", variant="primary")
                cancel_btn = gr.Button("Cancel", variant="stop")
            
            gr.Markdown("""
            <div style="text-align: center; margin-top: 10px;">
                <small>Note: Generation may take several seconds per image</small>
            </div>
            """)
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Output", id="output_tab"):
                    single_image = gr.Image(
                        label="Generated X-ray",
                        height=400,
                        visible=True
                    )
                    gallery = gr.Gallery(
                        label="Generated X-rays",
                        columns=3,
                        height="auto",
                        object_fit="contain",
                        visible=False
                    )
    
    def update_ui_based_on_count(num_images):
        if num_images == 1:
            return {
                single_image: gr.update(visible=True),
                gallery: gr.update(visible=False)
            }
        else:
            return {
                single_image: gr.update(visible=False),
                gallery: gr.update(visible=True)
            }
    
    num_images.change(
        fn=update_ui_based_on_count,
        inputs=num_images,
        outputs=[single_image, gallery]
    )
    
    submit_btn.click(
        fn=generate_images,
        inputs=[condition, num_images],
        outputs=[single_image, gallery]
    )
    
    cancel_btn.click(
        fn=cancel_generation,
        outputs=None
    )

    demo.css = """
    .gradio-container {
        background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
    }
    .gallery-container {
        background-color: white !important;
    }
    """

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)