Vedansh-7's picture
Update app.py
aa082d3
raw
history blame
13.1 kB
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback
# Constants
IMG_SIZE = 128
TIMESTEPS = 300
NUM_CLASSES = 2
# Global Cancellation Flag
cancel_event = Event()
# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Model Definitions (from second file) ---
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
self.register_buffer('embeddings', self._precompute_embeddings(dim))
def _precompute_embeddings(self, dim):
half_dim = dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim) * -emb)
return emb
def forward(self, time):
device = time.device
embeddings = self.embeddings.to(device)
embeddings = time[:, None] * embeddings[None, :]
output = torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
return output
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
super().__init__()
self.num_classes = num_classes
self.label_embedding = nn.Embedding(num_classes, time_dim)
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(time_dim),
nn.Linear(time_dim, time_dim),
nn.ReLU(),
nn.Linear(time_dim, time_dim)
)
self.inc = self.double_conv(in_channels, 64)
self.down1 = self.down(64 + time_dim * 2, 128)
self.down2 = self.down(128 + time_dim * 2, 256)
self.down3 = self.down(256 + time_dim * 2, 512)
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)
self.outc = nn.Conv2d(64, out_channels, kernel_size=1)
def double_conv(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def down(self, in_channels, out_channels):
return nn.Sequential(
nn.MaxPool2d(2),
self.double_conv(in_channels, out_channels)
)
def forward(self, x, labels, time):
label_indices = torch.argmax(labels, dim=1)
label_emb = self.label_embedding(label_indices)
t_emb = self.time_mlp(time)
combined_emb = torch.cat([t_emb, label_emb], dim=1)
combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)
x1 = self.inc(x)
x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)
x2 = self.down1(x1_cat)
x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)
x3 = self.down2(x2_cat)
x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)
x4 = self.down3(x3_cat)
x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)
x5 = self.bottleneck(x4_cat)
x = self.up1(x5)
x = torch.cat([x, x3], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv1(x)
x = self.up2(x)
x = torch.cat([x, x2], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv2(x)
x = self.up3(x)
x = torch.cat([x, x1], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv3(x)
output = self.outc(x)
return output
class DiffusionModel(nn.Module):
def __init__(self, model, timesteps=500, time_dim=256):
super().__init__()
self.model = model
self.timesteps = timesteps
self.time_dim = time_dim
self.betas = self.linear_schedule(timesteps)
self.alphas = 1. - self.betas
self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0).float())
def linear_schedule(self, timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def forward_diffusion(self, x_0, t, noise):
x_0 = x_0.float()
noise = noise.float()
alpha_bar_t = self.alpha_bars[t].view(-1, 1, 1, 1)
x_t = torch.sqrt(alpha_bar_t) * x_0 + torch.sqrt(1. - alpha_bar_t) * noise
return x_t
def forward(self, x_0, labels):
t = torch.randint(0, self.timesteps, (x_0.shape[0],), device=x_0.device).long()
noise = torch.randn_like(x_0)
x_t = self.forward_diffusion(x_0, t, noise)
predicted_noise = self.model(x_t, labels, t.float())
return predicted_noise, noise, t
@torch.no_grad()
def sample(model, num_images, timesteps, img_size, num_classes, labels, device, progress_callback=None):
x_t = torch.randn(num_images, 3, img_size, img_size).to(device)
if labels.ndim == 1:
labels_one_hot = torch.zeros(num_images, num_classes).to(device)
labels_one_hot[torch.arange(num_images), labels] = 1
labels = labels_one_hot
else:
labels = labels.to(device)
for t in reversed(range(timesteps)):
if cancel_event.is_set():
return None
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float)
predicted_noise = model.model(x_t, labels, t_tensor)
beta_t = model.betas[t].to(device)
alpha_t = model.alphas[t].to(device)
alpha_bar_t = model.alpha_bars[t].to(device)
mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
variance = beta_t
if t > 0:
noise = torch.randn_like(x_t)
else:
noise = torch.zeros_like(x_t)
x_t = mean + torch.sqrt(variance) * noise
if progress_callback:
progress_callback((timesteps - t) / timesteps)
x_0 = torch.clamp(x_t, -1., 1.)
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
x_0 = std * x_0 + mean
x_0 = torch.clamp(x_0, 0., 1.)
return x_0
def load_model(model_path, device):
unet_model = UNet(num_classes=NUM_CLASSES).to(device)
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
try:
checkpoint = torch.load(model_path, map_location=device)
if 'model_state_dict' in checkpoint:
diffusion_model.model.load_state_dict(checkpoint['model_state_dict'])
else:
diffusion_model.model.load_state_dict(checkpoint)
print(f"Successfully loaded model from {model_path}")
except Exception as e:
print(f"Error loading model: {e}")
print("Using randomly initialized weights")
diffusion_model.eval()
return diffusion_model
def cancel_generation():
cancel_event.set()
return "Generation cancelled"
def generate_single_image(label_str):
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
try:
label_index = label_map[label_str]
except KeyError:
raise gr.Error(f"Invalid label '{label_str}'. Please select either 'Pneumonia' or 'Pneumothorax'.")
labels = torch.zeros(1, NUM_CLASSES, device=device)
labels[0, label_index] = 1
with torch.no_grad():
generated_image = sample(
model=loaded_model,
num_images=1,
timesteps=TIMESTEPS,
img_size=IMG_SIZE,
num_classes=NUM_CLASSES,
labels=labels,
device=device
)
img_np = generated_image.squeeze(0).cpu().permute(1, 2, 0).numpy()
img_np = np.clip(img_np, 0, 1)
img_pil = Image.fromarray((img_np * 255).astype(np.uint8))
return img_pil
def generate_batch_images(label_str, num_images, progress=gr.Progress()):
global loaded_model
cancel_event.clear()
if num_images < 1 or num_images > 10:
raise gr.Error("Number of images must be between 1 and 10")
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
if label_str not in label_map:
raise gr.Error("Invalid condition selected")
labels = torch.zeros(num_images, NUM_CLASSES, device=device)
labels[:, label_map[label_str]] = 1
try:
def progress_callback(progress_val):
progress(progress_val, desc="Generating...")
if cancel_event.is_set():
raise gr.Error("Generation was cancelled by user")
with torch.no_grad():
images = sample(
model=loaded_model,
num_images=num_images,
timesteps=TIMESTEPS,
img_size=IMG_SIZE,
num_classes=NUM_CLASSES,
labels=labels,
device=device,
progress_callback=progress_callback
)
if images is None:
return None
processed_images = []
for img in images:
img_np = img.cpu().permute(1, 2, 0).numpy()
img_np = np.clip(img_np, 0, 1)
pil_img = Image.fromarray((img_np * 255).astype(np.uint8))
processed_images.append(pil_img)
return processed_images
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
raise gr.Error("Out of GPU memory - try generating fewer images")
except Exception as e:
traceback.print_exc()
if str(e) != "Generation was cancelled by user":
raise gr.Error(f"Generation failed: {str(e)}")
return None
finally:
torch.cuda.empty_cache()
# Load model
MODEL_DIR = "models"
MODEL_NAME = "diffusion_unet_xray.pth"
model_path = os.path.join(MODEL_DIR, MODEL_NAME)
print("Loading model...")
loaded_model = load_model(model_path, device)
print("Model loaded successfully!")
# --- Gradio UI (from first file with modifications) ---
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="violet",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Poppins")],
text_size="md"
)) as demo:
gr.Markdown("""
<center>
<h1>Synthetic X-ray Generator</h1>
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
</center>
""")
with gr.Row():
with gr.Column(scale=1):
condition = gr.Dropdown(
["Pneumonia", "Pneumothorax"],
label="Select Condition",
value="Pneumonia",
interactive=True
)
num_images = gr.Slider(
1, 10, value=1, step=1,
label="Number of Images",
interactive=True
)
with gr.Row():
submit_btn = gr.Button("Generate", variant="primary")
cancel_btn = gr.Button("Cancel", variant="stop")
gr.Markdown("""
<div style="text-align: center; margin-top: 10px;">
<small>Note: Generation may take several seconds per image</small>
</div>
""")
with gr.Column(scale=2):
with gr.Tab("Single Image"):
single_image = gr.Image(
type="pil",
label="Generated X-ray",
height=400
)
with gr.Tab("Batch Images"):
gallery = gr.Gallery(
label="Generated X-rays",
columns=3,
height="auto",
object_fit="contain"
)
# Single image generation
condition.change(
fn=generate_single_image,
inputs=condition,
outputs=single_image
)
# Batch image generation
submit_btn.click(
fn=generate_batch_images,
inputs=[condition, num_images],
outputs=gallery
)
cancel_btn.click(
fn=cancel_generation,
outputs=None
)
demo.css = """
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
}
.gallery-container {
background-color: white !important;
}
"""
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)