Spaces:
Sleeping
Sleeping
File size: 10,229 Bytes
f7d4608 d1ca23a f7d4608 d1ca23a 75115cd d1ca23a f7d4608 935efff f7d4608 172e21d 22481bd 172e21d 22481bd 172e21d 22481bd 172e21d 22481bd f7d4608 d1ca23a f7d4608 d1ca23a 75115cd d1ca23a 75115cd d1ca23a f7d4608 d1ca23a 75115cd d1ca23a 75115cd 540db73 75115cd d1ca23a 75115cd d1ca23a 75115cd d1ca23a 75115cd d1ca23a f7d4608 22481bd f7d4608 d1ca23a f7d4608 d1ca23a f7d4608 d1ca23a f7d4608 d1ca23a f7d4608 d1ca23a f7d4608 d1ca23a f7d4608 22481bd 172e21d 22481bd f7d4608 22481bd d1ca23a f7d4608 d1ca23a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import json
import re
from typing import Optional, Dict, Union, IO, List, BinaryIO
from google import genai
from google.genai import types
from application.utils import logger
import requests
import io
logger=logger.get_logger()
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
# PROMPT = (
# """You are a PDF parsing agent. Your job is to extract GHG Protocol Parameters
# and ESG (Environmental, Social, Governance) Data from a company’s sustainability
# or ESG report in PDF format.
# You must extract the data based on a predefined response schema. It is critical
# that you return all keys specified in the schema, even if the value is not present
# or not found in the document. If a value is missing or unavailable, return a suitable
# placeholder according to the format used
# in the schema.
# Your output should strictly follow the structure of the schema, ensuring completeness
# and consistency for downstream processing.
# Be precise in extracting values and identifying relevant context from the PDF. Use
# surrounding text or tables to identify the most likely match for each field.
# """
# )
PROMPT = (
"""You are a PDF parsing agent specialized in extracting structured sustainability data from a company's Sustainability, ESG, or Corporate Responsibility Report in PDF format.
Your task is to extract Greenhouse Gas (GHG) Protocol, Environmental (CSRD), Materiality, Net Zero Interventions, and ESG (Environmental, Social, Governance) Data with high accuracy and consistency for downstream processing.
### Instructions:
1. **Schema Adherence**: Strictly follow the provided schema for output structure. Ensure every field in the schema is populated with either extracted data or a placeholder.
2. **Data Sources**: Extract data from all relevant sections of the PDF, including:
- Narrative text
- Tables
- Infographics, charts, or visual elements (interpret labels, captions, or legends to extract numerical or textual data)
- Footnotes or appendices
3. **Infographic Handling**: For infographics, prioritize:
- Text labels or annotations within the graphic
- Captions or descriptions near the infographic
- Legends or keys that clarify values
- If values are ambiguous, cross-reference with narrative text or tables discussing similar metrics.
4. **Year and Scope**: Identify the reporting year and scope (e.g., global, regional) for each metric. If not explicitly stated, infer from the report's context (e.g., '2023 Sustainability Report' implies 2023 data).
5. **Edge Cases**:
- If data is missing, use placeholders as specified in the schema.
- If multiple values exist for a field (e.g., emissions for different years), select the most recent year unless otherwise specified in the schema.
### Output Requirements:
- Return a JSON object adhering to the schema.
- Ensure all fields are populated, using placeholders for missing data.
- Include a 'notes' field in the output for any assumptions, estimations, or conflicts encountered during extraction.
### Task:
- Parse the PDF thoroughly to extract all relevant data.
- Ensure consistency in units, years, and terminology across the output.
- Handle infographics with care, prioritizing textual data and flagging estimates.
- Provide a complete, schema-compliant JSON output with notes for any ambiguities or assumptions.
"""
)
def sanitize_file_name(name: str, max_length: int = 40) -> str:
"""
Sanitizes a file name to comply with Gemini API naming rules:
- Lowercase only
- Alphanumeric characters and dashes (`-`) allowed
- Cannot start or end with a dash
- Max length: 40 characters
Args:
name (str): The original file name (without extension).
max_length (int, optional): Maximum allowed characters (default: 40).
Returns:
str: Sanitized file name.
Raises:
ValueError: If the sanitized name is empty after cleaning.
"""
if not name or not isinstance(name, str):
raise ValueError("Invalid file name: must be a non-empty string.")
# Convert to lowercase and replace invalid characters with dashes
name = re.sub(r'[^a-z0-9]+', '-', name.lower())
# Remove leading/trailing dashes and truncate
name = name.strip('-')[:max_length].rstrip('-')
if not name:
raise ValueError("Sanitized file name is empty or invalid after cleanup.")
return name
def get_files() -> List[str]:
"""
Retrieves all uploaded file names from Gemini.
Returns:
List[str]: List of existing file names.
"""
files = client.files.list()
return [file.name for file in files]
def delete_files(file_names: Union[str, List[str]]) -> None:
"""
Deletes specified files from Gemini.
Args:
file_names (Union[str, List[str]]): File name or list of names to delete.
"""
if not file_names:
logger.warning("No file names provided for deletion.")
return
if isinstance(file_names, str):
file_names = [file_names]
existing_files = get_files()
for name in file_names:
logger.info(f"Attempting to delete file: {name}")
if name in existing_files:
client.files.delete(name=name)
logger.info(f"Deleted file: {name}")
else:
logger.warning(f"File not found: {name}")
def upload_file(
file: Union[str, IO[bytes]],
file_name: Optional[str] = None,
config: Optional[Dict[str, str]] = None
) -> Optional[types.File]:
"""
Uploads a file to the Gemini API, handling local file paths, binary streams, and URLs.
Args:
file (Union[str, IO[bytes]]): Local file path, URL, or binary file object.
file_name (Optional[str]): Name for the file. If None, tries to infer it from the source.
config (Optional[Dict[str, str]]): Extra config like 'mime_type'.
Returns:
Optional[types.File]: The uploaded Gemini file object, or existing one if already uploaded.
Raises:
Exception: If upload fails.
"""
try:
is_url = isinstance(file, str) and file.startswith(('http://', 'https://'))
if not file_name:
if is_url:
file_name = os.path.basename(file.split("?")[0])
elif isinstance(file, str):
file_name = os.path.basename(file)
elif hasattr(file, "name"):
file_name = os.path.basename(file.name)
else:
raise ValueError("file_name must be provided if file has no 'name' attribute.")
sanitized_name = sanitize_file_name(os.path.splitext(file_name)[0])
mime_type = "application/pdf"
config = config or {}
config.update({"name": sanitized_name, "mime_type": mime_type})
gemini_file_key = f"files/{sanitized_name}"
if gemini_file_key in get_files():
logger.info(f"File already exists on Gemini: {gemini_file_key}")
return client.files.get(name=gemini_file_key)
logger.info(f"Uploading file to Gemini: {gemini_file_key}")
if is_url:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"
}
response = requests.get(file, headers=headers)
response.raise_for_status()
file_content = io.BytesIO(response.content)
return client.files.upload(file=file_content, config=config)
if isinstance(file, str):
if not os.path.isfile(file):
raise FileNotFoundError(f"Local file '{file}' does not exist.")
with open(file, "rb") as f:
return client.files.upload(file=f, config=config)
return client.files.upload(file=file, config=config)
except Exception as e:
logger.error(f"Failed to upload file '{file_name}': {e}")
raise
def extract_emissions_data_as_json(
api: str,
model: str,
file_input: Union[BinaryIO, bytes],
response_schema
) -> Optional[dict]:
"""
Extracts ESG data from a PDF using the Gemini API.
Args:
api (str): API provider (must be 'gemini').
model (str): Model name (e.g., 'gemini-pro').
file_input (Union[BinaryIO, bytes]): File object or byte stream.
Returns:
Optional[dict]: Parsed JSON response or raw text if parsing fails.
"""
try:
if api.lower() != "gemini":
logger.error(f"Unsupported API: {api}")
return None
file_name = file_input.name if hasattr(file_input, 'name') else "uploaded_file.pdf"
uploaded_file = upload_file(file=file_input, file_name=file_name)
response = client.models.generate_content(
model=model,
contents=[uploaded_file, PROMPT],
config={
'response_mime_type': 'application/json',
'response_schema': response_schema,
'temperature': 0.0,
},
)
if hasattr(response, 'usage_metadata'):
logger.info(f"Input tokens: {response.usage_metadata.prompt_token_count}")
logger.info(f"Output tokens: {response.usage_metadata.candidates_token_count}")
logger.info(f"Total tokens: {response.usage_metadata.total_token_count}")
else:
logger.info("Token usage metadata not available in response")
logger.info("[Gemini] Response received.")
try:
return json.loads(response.text)
except json.JSONDecodeError:
logger.warning("Failed to parse JSON, returning raw response.")
return {"raw_response": response.text}
except Exception as e:
logger.exception("Error during ESG data extraction.")
return None |