File size: 5,409 Bytes
f7d4608
 
 
 
 
 
 
 
 
 
935efff
f7d4608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22481bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import json
from typing import Union, BinaryIO, Optional
from openai import OpenAI
from google import genai
from google.genai import types
from application.utils import logger
from application.schemas.response_schema import RESPONSE_FORMAT,GEMINI_RESPONSE_FORMAT

logger = logger.get_logger()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# --- Constants ---

PROMPT = (
    "You are a PDF parsing agent. "
    "Your job is to extract GHG Protocol Parameters and ESG (Environmental, Social, Governance) Data "
    "from a company’s sustainability or ESG report in PDF format."
)

# --- OpenAI Helpers ---

def get_files() -> list:
    """Retrieve all files from OpenAI client."""
    try:
        files = client.files.list()
        logger.info(f"Retrieved {len(files.data)} files.")
        return files.data
    except Exception as e:
        logger.error(f"Failed to retrieve files: {e}")
        raise

def get_or_create_file(file_input: BinaryIO, client) -> object:
    """

    Retrieve a file from OpenAI by name or upload it if not present.



    Args:

        file_input: File-like object with `.name` attribute.

        client: OpenAI client instance.



    Returns:

        File object.

    """
    file_name = getattr(file_input, 'name', None)
    if not file_name:
        raise ValueError("File input must have a 'name' attribute.")

    try:
        for file in get_files():
            if file.filename == file_name:
                logger.info(f"File '{file_name}' already exists with ID: {file.id}")
                return client.files.retrieve(file.id)
        
        logger.info(f"Uploading new file '{file_name}'...")
        new_file = client.files.create(file=(file_name, file_input), purpose="assistants")
        logger.info(f"File uploaded successfully with ID: {new_file.id}")
        return new_file

    except Exception as e:
        logger.error(f"Error during get_or_create_file: {e}")
        raise

def delete_file_by_size(size: int, client):
    """

    Deletes files from OpenAI that match a given byte size.



    Args:

        size: File size in bytes to match for deletion.

        client: OpenAI client instance.

    """
    try:
        files = get_files()
        for file in files:
            if file.bytes == size:
                client.files.delete(file.id)
                logger.info(f"File {file.filename} deleted (size matched: {size} bytes).")
            else:
                logger.info(f"File {file.filename} skipped (size mismatch).")
    except Exception as e:
        logger.error(f"Failed to delete files: {e}")
        raise

# --- Main Function ---

def extract_emissions_data_as_json(

    api: str,

    model: str,

    file_input: Union[BinaryIO, bytes]

) -> Optional[dict]:
    """

    Extract ESG data from PDF using OpenAI or Gemini APIs.



    Args:

        api: 'openai' or 'gemini'

        model: Model name (e.g. gpt-4o, gemini-pro)

        file_input: File-like object or bytes of the PDF.



    Returns:

        Parsed ESG data as dict or None if failed.

    """
    try:
        if api.lower() == "openai":
            file = get_or_create_file(file_input, client)

            logger.info("[OpenAI] Sending content for generation...")

            response = client.chat.completions.create(
                model=model,
                messages=[{
                    "role": "user",
                    "content": [
                        {"type": "file", "file": {"file_id": file.id}},
                        {"type": "text", "text": PROMPT}
                    ]
                }],
                response_format=RESPONSE_FORMAT
            )

            result = response.choices[0].message.content
            logger.info("ESG data extraction successful.")
            return result

        elif api.lower() == "gemini":
            client = genai.Client(api_key=os.getenv("gemini_api_key"))

            file_bytes = file_input.read()
            logger.info("[Gemini] Sending content for generation...")

            response = client.models.generate_content(
                model=model,
                contents=[
                    types.Part.from_bytes(data=file_bytes, mime_type="application/pdf"),
                    PROMPT
                ],
                config={
                    'response_mime_type': 'application/json',
                    'response_schema': GEMINI_RESPONSE_FORMAT,
                }
            )
            logger.info("[Gemini] Response received.")
            try:
                return json.loads(response.text)
            except json.JSONDecodeError:
                logger.warning("Failed to parse JSON, returning raw response.")
                return {"raw_response": response.text}
        else:
            logger.error(f"Unsupported API: {api}")
            return None

    except Exception as e:
        logger.exception("Error during ESG data extraction.")
        return None

def list_all_files():
    """Lists all files currently uploaded to OpenAI."""
    try:
        files = get_files()
        for file in files:
            logger.info(f"File ID: {file.id}, Name: {file.filename}, Size: {file.bytes} bytes")
    except Exception as e:
        logger.error(f"Failed to list files: {e}")