Vela
added few changes
91a458d
raw
history blame
5.16 kB
import pandas as pd
import os
import sys
src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "backend"))
sys.path.append(src_directory)
from utils import logger
file_path = "./world_population.csv"
# file_path = "C:/Users/Vijay/Downloads/world_population.csv"
# data_frame = pd.read_csv(file_path)
def process_data():
try:
logger.log("I'm going to read the csv")
data_frame = pd.read_csv(file_path)
logger.log("I'm reading the csv")
return data_frame
except Exception as e :
logger.log("I couldn't read the file")
return f"Unable to read the file {e}"
def display_continents(dataframe):
continents = dataframe['Continent'].unique()
logger.log("Displaying the list of continents in the data")
return continents
def display_countries(dataframe):
countries = dataframe['Country'].values
logger.log("Displaying the list of countries in the data")
return countries
def continent_with_highest_population(dataframe):
highest= dataframe.groupby('Continent')['Population'].agg(total_population = 'sum')
max_continent = highest.idxmax().item()
max_population = highest.max().item()
result = {max_continent:max_population}
logger.log("Displaying the continent with highest population in the data")
return result
def continent_with_lowest_population(dataframe):
lowest= dataframe.groupby('Continent')['Population'].agg(total_population = 'sum')
min_continent = lowest.idxmin().item()
min_population = lowest.min().item()
result = {min_continent:min_population}
logger.log("Displaying the continent with lowest population in the data")
return result
def country_with_lowest_population(dataframe):
index= dataframe['Population'].idxmin()
min_country = dataframe['Country'][index]
min_population = dataframe['Population'][index]
result = {min_country:min_population.item()}
logger.log("Displaying the country with lowest population in the data")
return result
def country_with_highest_population(dataframe):
index= dataframe['Population'].idxmax()
max_country = dataframe['Country'][index]
max_population = dataframe['Population'][index]
result = {max_country:max_population.item()}
logger.log("Displaying the country with highest population in the data")
return result
def list_country_by_continent(dataframe,continent):
try:
df_countries = dataframe[dataframe['Continent'] == continent]
countries= df_countries['Country'].to_list()
logger.log("Separated data by continent")
return countries
except Exception as e:
return f"{e}"
def get_stat_by_continent(df ,continent: str, data_type: str, stat: str , ):
if continent.lower() == "NorthAmerica".lower():
continent = "North America"
if continent.lower() == "SouthAmerica".lower():
continent = "South America"
valid_stats = ['max', 'min', 'mean' , 'sum' , 'count']
if stat not in valid_stats:
return f"Invalid stat. Please use one of the following: {valid_stats}."
continent_population_stats = df.groupby('Continent')[data_type].agg(
Maximum='max', Minimum='min', Average = 'mean',Total='sum' , Number_of_Countries = 'count')
continent_countries = df[df['Continent'] == continent]
if continent not in continent_population_stats.index:
return f"Continent '{continent}' not found in the data."
if stat == 'max':
population_result = continent_population_stats.loc[continent]['Maximum']
country_id = continent_countries.loc[continent_countries[data_type].idxmax()]
country_name = country_id['Country']
population_value = country_id[data_type]
return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}"
if stat == 'min':
population_result = continent_population_stats.loc[continent]['Minimum']
country_id = continent_countries.loc[continent_countries[data_type].idxmin()]
country_name = country_id['Country']
population_value = country_id[data_type]
return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}"
if stat == 'mean':
population_result = continent_population_stats.loc[continent]['Average']
return f"{continent}'s average {data_type} is {int(population_result)}"
if stat == 'sum':
population_result = continent_population_stats.loc[continent]['Total']
return f"{continent}'s total {data_type} is {int(population_result)}"
if stat == 'count' :
population_result = continent_population_stats.loc[continent]['Number_of_Countries']
return f"Total countries in {continent} is {int(population_result)}"
def get_continent_with_max_value(dataframe, key, value):
max_id = dataframe[value].idxmax()
value_num = dataframe[value][max_id]
value_country = dataframe[key][max_id]
return f"{value_country}'s max {value} is {value_num}"