Spaces:
Sleeping
Sleeping
import pandas as pd | |
import os | |
import sys | |
src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "backend")) | |
sys.path.append(src_directory) | |
from utils import logger | |
file_path = "./world_population.csv" | |
# file_path = "C:/Users/Vijay/Downloads/world_population.csv" | |
# data_frame = pd.read_csv(file_path) | |
def process_data(): | |
try: | |
logger.log("I'm going to read the csv") | |
data_frame = pd.read_csv(file_path) | |
logger.log("I'm reading the csv") | |
return data_frame | |
except Exception as e : | |
logger.log("I couldn't read the file") | |
return f"Unable to read the file {e}" | |
def display_continents(dataframe): | |
continents = dataframe['Continent'].unique() | |
logger.log("Displaying the list of continents in the data") | |
return continents | |
def display_countries(dataframe): | |
countries = dataframe['Country'].values | |
logger.log("Displaying the list of countries in the data") | |
return countries | |
def continent_stat(dataframe, attribute="Population", stat_type="highest"): | |
try: | |
if 'Continent' not in dataframe.columns or attribute not in dataframe.columns: | |
return ValueError(f"Dataframe must contain 'Continent' and '{attribute}' columns.") | |
continent_stats = dataframe.groupby('Continent')[attribute].agg(total_attribute='sum') | |
if stat_type == "highest": | |
continent = continent_stats.idxmax().item() | |
value = continent_stats.max().item() | |
logger.log(f"Displaying the continent with the highest {attribute}: {continent} with {attribute} {value}") | |
elif stat_type == "lowest": | |
continent = continent_stats.idxmin().item() | |
value = continent_stats.min().item() | |
logger.log(f"Displaying the continent with the lowest {attribute}: {continent} with {attribute} {value}") | |
else: | |
raise ValueError("Invalid stat_type. Use 'highest' or 'lowest'.") | |
return {continent: value} | |
except Exception as e: | |
logger.log(f"Error in continent_stat: {str(e)}") | |
return {"error": str(e)} | |
def country_stat(dataframe, attribute : str = "Population", stat_type :str = "highest"): | |
try : | |
if stat_type.lower() == "highest": | |
index= dataframe[attribute].idxmax() | |
elif stat_type.lower() == "lowest": | |
index= dataframe[attribute].idxmin() | |
country = dataframe['Country'][index] | |
requested_attribute = dataframe[attribute][index] | |
result = {country:requested_attribute.item()} | |
logger.log(f"Displaying the country with {stat_type} {attribute} in the data") | |
return result | |
except Exception as e: | |
return f"Unable to fetch the data. Error {e}" | |
# def list_country_by_continent(dataframe,continent): | |
# try: | |
# df_countries = dataframe[dataframe['Continent'] == continent] | |
# countries= df_countries['Country'].to_list() | |
# logger.log("Separated data by continent") | |
# return countries | |
# except Exception as e: | |
# return f"{e}" | |
# def get_stat_by_continent(df ,continent: str, data_type: str, stat: str , ): | |
# if continent.lower() == "NorthAmerica".lower(): | |
# continent = "North America" | |
# if continent.lower() == "SouthAmerica".lower(): | |
# continent = "South America" | |
# valid_stats = ['max', 'min', 'mean' , 'sum' , 'count'] | |
# if stat not in valid_stats: | |
# return f"Invalid stat. Please use one of the following: {valid_stats}." | |
# continent_population_stats = df.groupby('Continent')[data_type].agg( | |
# Maximum='max', Minimum='min', Average = 'mean',Total='sum' , Number_of_Countries = 'count') | |
# continent_countries = df[df['Continent'] == continent] | |
# if continent not in continent_population_stats.index: | |
# return f"Continent '{continent}' not found in the data." | |
# if stat == 'max': | |
# population_result = continent_population_stats.loc[continent]['Maximum'] | |
# country_id = continent_countries.loc[continent_countries[data_type].idxmax()] | |
# country_name = country_id['Country'] | |
# population_value = country_id[data_type] | |
# return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}" | |
# if stat == 'min': | |
# population_result = continent_population_stats.loc[continent]['Minimum'] | |
# country_id = continent_countries.loc[continent_countries[data_type].idxmin()] | |
# country_name = country_id['Country'] | |
# population_value = country_id[data_type] | |
# return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}" | |
# if stat == 'mean': | |
# population_result = continent_population_stats.loc[continent]['Average'] | |
# return f"{continent}'s average {data_type} is {int(population_result)}" | |
# if stat == 'sum': | |
# population_result = continent_population_stats.loc[continent]['Total'] | |
# return f"{continent}'s total {data_type} is {int(population_result)}" | |
# if stat == 'count' : | |
# population_result = continent_population_stats.loc[continent]['Number_of_Countries'] | |
# return f"Total countries in {continent} is {int(population_result)}" | |
# def get_continent_with_max_value(dataframe, key, value): | |
# max_id = dataframe[value].idxmax() | |
# value_num = dataframe[value][max_id] | |
# value_country = dataframe[key][max_id] | |
# return f"{value_country}'s max {value} is {value_num}" |