Spaces:
Sleeping
Sleeping
import time | |
import logging | |
from fastapi import FastAPI, Request | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
app = FastAPI() | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base") | |
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
class SummarizeRequest(BaseModel): | |
text: str | |
async def root(): | |
return {"message": "Model is ready."} | |
async def summarize(req: Request, body: SummarizeRequest): | |
start_time = time.time() | |
client_ip = req.client.host | |
logger.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] 🔵 Received request from {client_ip}") | |
text = body.text.strip() | |
# Tiền xử lý: nếu không giống tin tức thì thêm "Tin nhanh:" | |
if not text.lower().startswith(("theo", "trong khi", "bộ", "ngày", "việt nam", "công an")): | |
text = "Tin nhanh: " + text | |
input_text = text + " </s>" | |
encoding = tokenizer(input_text, return_tensors="pt") | |
input_ids = encoding["input_ids"].to(device) | |
attention_mask = encoding["attention_mask"].to(device) | |
# Sinh tóm tắt với cấu hình ổn định | |
outputs = model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_length=128, | |
num_beams=2, | |
early_stopping=True, | |
no_repeat_ngram_size=2, | |
num_return_sequences=1 | |
) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
end_time = time.time() | |
logger.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] ✅ Response sent — total time: {end_time - start_time:.2f}s") | |
return {"summary": summary} | |