Spaces:
Sleeping
Sleeping
add time log and reduce processing time
Browse files
app.py
CHANGED
@@ -1,65 +1,59 @@
|
|
1 |
import time
|
2 |
import logging
|
3 |
-
import torch
|
4 |
from fastapi import FastAPI, Request
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
-
|
8 |
-
import asyncio
|
9 |
-
|
10 |
-
# Khởi tạo app
|
11 |
-
app = FastAPI()
|
12 |
|
13 |
-
# Logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
|
|
15 |
|
16 |
-
|
17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
|
19 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base").to(device)
|
20 |
|
21 |
-
#
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
class TextIn(BaseModel):
|
26 |
text: str
|
27 |
|
28 |
-
# -------------------------------
|
29 |
-
# GET: kiểm tra API sẵn sàng
|
30 |
@app.get("/")
|
31 |
-
def
|
32 |
-
return {"message": "
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
input_ids = encoding["input_ids"].to(device)
|
40 |
attention_mask = encoding["attention_mask"].to(device)
|
41 |
|
|
|
42 |
outputs = model.generate(
|
43 |
input_ids=input_ids,
|
44 |
attention_mask=attention_mask,
|
45 |
max_length=128,
|
46 |
num_beams=2,
|
47 |
-
early_stopping=True
|
|
|
|
|
48 |
)
|
49 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
50 |
-
|
51 |
-
# -------------------------------
|
52 |
-
# POST: async API tóm tắt
|
53 |
-
@app.post("/summarize")
|
54 |
-
async def summarize(request: Request, payload: TextIn):
|
55 |
-
start_time = time.time()
|
56 |
-
client_ip = request.client.host
|
57 |
-
logging.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] 🔵 Received request from {client_ip}")
|
58 |
|
59 |
-
summary =
|
60 |
|
61 |
end_time = time.time()
|
62 |
-
|
63 |
-
logging.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] ✅ Response sent — total time: {duration:.2f}s")
|
64 |
|
65 |
return {"summary": summary}
|
|
|
1 |
import time
|
2 |
import logging
|
|
|
3 |
from fastapi import FastAPI, Request
|
4 |
from pydantic import BaseModel
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
import torch
|
|
|
|
|
|
|
|
|
7 |
|
|
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
|
11 |
+
app = FastAPI()
|
|
|
|
|
|
|
12 |
|
13 |
+
# Load model and tokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
|
15 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base")
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model.to(device)
|
18 |
|
19 |
+
class SummarizeRequest(BaseModel):
|
|
|
20 |
text: str
|
21 |
|
|
|
|
|
22 |
@app.get("/")
|
23 |
+
async def root():
|
24 |
+
return {"message": "Model is ready."}
|
25 |
|
26 |
+
@app.post("/summarize")
|
27 |
+
async def summarize(req: Request, body: SummarizeRequest):
|
28 |
+
start_time = time.time()
|
29 |
+
client_ip = req.client.host
|
30 |
+
logger.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] 🔵 Received request from {client_ip}")
|
31 |
+
|
32 |
+
text = body.text.strip()
|
33 |
+
|
34 |
+
# Tiền xử lý: nếu không giống tin tức thì thêm "Tin nhanh:"
|
35 |
+
if not text.lower().startswith(("theo", "trong khi", "bộ", "ngày", "việt nam", "công an")):
|
36 |
+
text = "Tin nhanh: " + text
|
37 |
+
|
38 |
+
input_text = text + " </s>"
|
39 |
+
encoding = tokenizer(input_text, return_tensors="pt")
|
40 |
input_ids = encoding["input_ids"].to(device)
|
41 |
attention_mask = encoding["attention_mask"].to(device)
|
42 |
|
43 |
+
# Sinh tóm tắt với cấu hình ổn định
|
44 |
outputs = model.generate(
|
45 |
input_ids=input_ids,
|
46 |
attention_mask=attention_mask,
|
47 |
max_length=128,
|
48 |
num_beams=2,
|
49 |
+
early_stopping=True,
|
50 |
+
no_repeat_ngram_size=2,
|
51 |
+
num_return_sequences=1
|
52 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
55 |
|
56 |
end_time = time.time()
|
57 |
+
logger.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] ✅ Response sent — total time: {end_time - start_time:.2f}s")
|
|
|
58 |
|
59 |
return {"summary": summary}
|