Spaces:
Sleeping
Sleeping
add time log and reduce processing time
Browse files
app.py
CHANGED
@@ -1,49 +1,65 @@
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import logging
|
7 |
|
|
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
# Logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
-
logger = logging.getLogger("summarizer")
|
13 |
|
14 |
-
#
|
15 |
-
MODEL_NAME = "VietAI/vit5-base-vietnews-summarization"
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
-
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
text: str
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
outputs = model.generate(
|
33 |
-
|
|
|
34 |
max_length=128,
|
35 |
num_beams=2,
|
36 |
-
no_repeat_ngram_size=2,
|
37 |
early_stopping=True
|
38 |
)
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
end_time = time.time()
|
42 |
duration = end_time - start_time
|
43 |
-
|
44 |
|
45 |
return {"summary": summary}
|
46 |
-
|
47 |
-
@app.get("/")
|
48 |
-
def root():
|
49 |
-
return {"message": "Vietnamese Summarization API is up and running!"}
|
|
|
1 |
+
import time
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
from fastapi import FastAPI, Request
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
+
import asyncio
|
|
|
9 |
|
10 |
+
# Khởi tạo app
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
|
|
15 |
|
16 |
+
# Load model và tokenizer
|
|
|
|
|
|
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base").to(device)
|
20 |
|
21 |
+
# Thread executor để xử lý blocking
|
22 |
+
executor = ThreadPoolExecutor(max_workers=2)
|
23 |
+
|
24 |
+
# Kiểu dữ liệu đầu vào
|
25 |
+
class TextIn(BaseModel):
|
26 |
text: str
|
27 |
|
28 |
+
# -------------------------------
|
29 |
+
# GET: kiểm tra API sẵn sàng
|
30 |
+
@app.get("/")
|
31 |
+
def read_root():
|
32 |
+
return {"message": "API is ready."}
|
33 |
|
34 |
+
# -------------------------------
|
35 |
+
# Hàm tóm tắt (blocking)
|
36 |
+
def summarize_text(text: str) -> str:
|
37 |
+
prompt = "vietnews: " + text.strip() + " </s>"
|
38 |
+
encoding = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
39 |
+
input_ids = encoding["input_ids"].to(device)
|
40 |
+
attention_mask = encoding["attention_mask"].to(device)
|
41 |
|
42 |
outputs = model.generate(
|
43 |
+
input_ids=input_ids,
|
44 |
+
attention_mask=attention_mask,
|
45 |
max_length=128,
|
46 |
num_beams=2,
|
|
|
47 |
early_stopping=True
|
48 |
)
|
49 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
50 |
+
|
51 |
+
# -------------------------------
|
52 |
+
# POST: async API tóm tắt
|
53 |
+
@app.post("/summarize")
|
54 |
+
async def summarize(request: Request, payload: TextIn):
|
55 |
+
start_time = time.time()
|
56 |
+
client_ip = request.client.host
|
57 |
+
logging.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] 🔵 Received request from {client_ip}")
|
58 |
+
|
59 |
+
summary = await asyncio.get_event_loop().run_in_executor(executor, summarize_text, payload.text)
|
60 |
|
61 |
end_time = time.time()
|
62 |
duration = end_time - start_time
|
63 |
+
logging.info(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] ✅ Response sent — total time: {duration:.2f}s")
|
64 |
|
65 |
return {"summary": summary}
|
|
|
|
|
|
|
|